REPORTS OF THE NATIONAL ACADEMY OF SCIENCES
OF THE REPUBLIC OF KAZAKHSTAN
ISSN 2224-5227
Volume 2, Number 318 (2018), 172 – 180

UDC 636.1.082

1A.R. Akimbekov, 1D.A. Baimukanov,
2K.Zh. Iskhan, 3M.M. Omarov, 4Kh.A. Aubakirov

1Kazakh Scientific Research Institute of Animal Breeding and Fodder Production, Almaty, Kazakhstan;
2Kazakh National Agrarian University, Almaty, Kazakhstan;
3Innovative Eurasian University, Pavlodar, Kazakhstan;
4Taraz State University named after M.Kh. Dulati, Taraz, Kazakhstan

DAIRY PRODUCTIVITY AND MILK COMPOSITION
OF MARES OF DIFFERENT GENOTYPES

Abstract. In the article, the materials of studies of the milking capacity of mares of different genotypes and the milk composition under the conditions of a stationary koumiss farm are presented. For the first time, the results of studies on the variability and interrelationship of the main components of milk and milk yield of mares under stable and pasture conditions are summarized and given in a comparative aspect. There are pedigree differences in the quantity and quality of milk. Novoaltaisk-Kazakh cross-breeds have a higher milking capacity, followed by the Kazakh mares of the Jabe type and the Don-Kazakh crossbreeds. During the lactation period, 1482.2 liters of commercial milk yield from the Kazakh mares of the Jabe type, 1513.4 liters from the Novoaltaisk-Kazakh hybrids and 1267.6 liters from the Don-Kazakh hybrids were received.

The highest fat content in milk was 1.79% in the Kazakh mares of Jabe type, in the Novoaltaisk-Kazakh hybrids it was 1.64% and in the Don-Kazakh hybrids - 1.52%. The protein content in milk of the Kazakh mares of Jabe type and the Novoaltaisk-Kazakh hybrids are practically the same 2.02 - 2.01%, and in the Don-Kazakh hybrids are only 1.87%. Variability of the fat content by lactation months is below the variability of milk yield and ranges from 5.06 to 7.88%. The correlation coefficient between milk yield and content of fat, protein, sugar had a negative value, and a positive relationship between the fat content and dry substance.

Keywords: genotype, milking capacity, lactation, variability, fat, protein, sugar, correlation.

УДК 636.1.082

1А.Р. Акимбеков, 1Д.А. Баймуканов,
2К.Ж. Исхан, 3М.М. Омаров, 4Х.А. Аубакиров

1 Казахский научно-исследовательский институт животноводства и кормопроизводства, Алматы, Казахстан;
2 Казахский Национальный аграрный университет, Алматы, Казахстан;
3 Инновационный Евразийский университет, Павлодар, Казахстан;
4 Тарасский Государственный университет им. М.Х. Дулати, Тараз, Казахстан

МОЛОЧНАЯ ПРОДУКТИВНОСТЬ
И СОСТАВ МОЛОКА КОБЫЛ РАЗНЫХ ГЕНОТИПОВ

Аннотация. В статье приведены материалы исследований молочности кобыл разных генотипов и состав молока в условиях стационарной кумысной фермы. Впервые обобщены и даны в сравнительном аспекте результаты исследований по изучению изменчивости и взаимосвязи основных компонентов молока и удоя кобыл при конношении — пастбищном условий содержания. Установлены породные различия по количеству и качеству молока, более высокой молочностью обладают новоалтайско-казахские помеси, затем
казахские кобылы типа жабе и доно-казахские помеси. За период лактации получен товарный удой 1482,2 л от казахских кобыл типа жабе, 1513,4 л от новоалтайско-казахских помесей и 1267,6 л от доно-казахских помесей.

Наиболее высокое содержание жира в молоке 1,79% наблюдалось казахских кобыл типа жабе, у новоалтайско – казахских помесей оно равнялось 1,64% и доно – казахских помесей 1,52%. Содержание белка в молоке казахских кобыл типа жабе и новоалтайско – казахских помесей практически одинаковы 2,02 – 2,01%. А доно – казахских помесей всего лишь 1,87%. Изменчивость содержания жира по месяцам лактации ниже изменчивости удоя и составляет от 5,06 до 7,88%. Коэффициент корреляции между удоем и содержанием жира, белка, сахара имело отрицательное значение, а между содержанием жира и сухого вещества положительная связь.

Ключевые слова: генотип, молочность, лактация, изменчивость, жир, белок, сахар, корреляция.

Введение
В условиях комплексной механизации сельскохозяйственного производства открываются значительные возможности для развития продуктивного коневодства в направлении производства кумыса и конины, связанного с обширными угольными пастбищами в Казахстане (187 млн га).

Развитию коневодства, особенно табунного, как важной продуктивной отрасли уделяется большое внимание в Павлодарской области, где имеются 8 млн. 235 тыс. 906 га степных и полупустынных пастбищ и более 135 тыс. голов лошадей, где наиболее эффективно табунное коневодство. Табунные лошади, как и многие другие виды животных, способны при свободном перемещении в пастбищном пространстве поедать выборочно нужную для них растительность, что способствует получению экологически чистой конины и кумыса [1].

Производство кумыса в Казахстане имеет богатые многовековые традиции. Кумыс для казахов всегда был любимым напитком и заменял им вино, минеральную воду и другие напитки. В Республике ежегодно производится около 24 тыс. тонн кумыса, а к 2020 г планируется произвести до 30 тыс. тонн.

В решении этой задачи большое значение имеет перевод молочного коневодства на промышленную основу, за счет создания крупных стационарных кумысных ферм. Так, в Павлодарской области имеются две стационарные кумысные фермы «Алтай» и «Сакып», которые производят кумыс круглый год.

При одинаковых условиях кормления, ухода и содержания кобылы разных пород отличаются неоднаковой продуктивностью в отношении количества, так и качества ее. Поэтому сравнительное изучение хозяйственно-полезных признаков лошадей способствует правильному выбору породы для тех или иных конкретных условий, что открывает больше дополнительные резервы в увеличении производства продуктов коневодства. При этом немаловажное значение имеет изучение характера и типов взаимосвязи основных селекционных признаков молочности: величины удоя, содержания жира и белка в молоке.

По химическому составу молоко кобылы значительно отличается от молока других видов животных, а по содержанию молочного сахара и качественного состава белка близко к женьшеню. Аналогичное сходство наблюдается также по содержанию витамина «С»). Кобылы молоко беднее жиром и белком, чем коровье. Однако в молоке кобыл содержание сахара 1,5 раза, а витамина «С» почти в 10 раз больше, чем коровье. По количеству лактозы и золы кобылы молоко и жженое молоко почти равноценны [2, 3, 4].

В молочном коневодстве все эти вопросы в комплексе мало изучены, тогда как в молочном скотоводстве они исследованы довольно глубоко [5, 6, 7]. Такое положение определяет направление наших исследований.

Объект исследования – дойные казахские кобылы типа жабе и их помеси от заводских пород, разводимые в условиях крестьянского хозяйства «Алтай» Лебяжинского района Павлодарской области.

Цель работы. Изучить молочную продуктивность и химический состав молока кобыл разных генотипов, определить степень изменчивости, взаимосвязи основных компонентов молока между собой и с уровнем удоя.

Метод или методология проведения работы. Исследования по изучению молочной продуктивности и химического состава молока проведены на стационарной кумысной ферме
крепынского хозяйства «Алтай» Лебряжинского района Павлодарской области на трех группах кобыл в период 2016 и 2017 гг.

Под опытом находилось 30 дойных кобыл, из них 10 голов казахских типа жабе, 10 голов новоалтайско-казахских и 10 голов донско-казахских помесей.

Для характеристики развития и типа телосложения подопытные кобылы были измерены и взвешены. У каждого животного брались по 4 промера: высота в холке, косая длина туловища, обхват груди и обхват пясти [8]. С целью изучения особенностей телосложения кобыл вычислялись индексы: формата, широтоклетости, массивности и костистости. Живая масса кобыл устанавливалась путем взвешивания на однотонных весах в начале и в конце лактации до утрениго кормления и посении.

Содержание дойных кобыл в осенне-зимний период конюшечно-пастбищное, а в весенне-летний – пастбищное.

Кобыл доили 6 раз в сутки, с перерывами между дойками в 2-2,5 часа электродоильным аппаратом ДДУ-2.

В осенне-зимний период кобылам кроме пастбищной растительности задавались грубые и концентрированные корма по классам с учетом живой массы и продуктивности [9].

Товарная молочность кобыл определялась ежемесячно в течение лактации методом контрольных удоев, два раза в месяц по двум смежным дням. Молочная продуктивность расчетывалась с учетом молока высосанного в ночное время в период летом по формуле Сайгина И.А. [10].

Химический анализ молока кобыл проводился в лаборатории Инновационного Евразийского университета г. Павлодар на анализаторе MilkoScan. При этом определяли содержание белка, жира и сахара в молоке. Процентное содержание сухого обезжиренного остатка «СОМО» в молоке определяли по разности показателей молока и дистиллированной воды по шкале «СОМО».

Все экспериментальные данные обрабатывались биометрическим методом, применяемым для малых выборок [11].

Результаты работы

Экспериментальная характеристика дойных кобыл. В крестьянском хозяйстве «Алтай» наряду с чистопородным разведением казахских лошадей жабе для повышения продуктивности использовалось «приплетение крови» новоалтайской и донской пород, которые дали положительные результаты.

Данные промеров и живой массы дойных кобыл разных генотипов приведены в таблице 1.

Таблица 1 – средние промеры и живая масса опытных групп (n=10 голов)

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Группы кобыл</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Казахские типа жабе</td>
</tr>
<tr>
<td></td>
<td>X±m, a</td>
</tr>
<tr>
<td>Промеры, см:</td>
<td></td>
</tr>
<tr>
<td>Высота в холке</td>
<td>142,7±0,47</td>
</tr>
<tr>
<td>Косая длина туловища</td>
<td>148,8±0,51</td>
</tr>
<tr>
<td>Обхват груди</td>
<td>178,3±0,70</td>
</tr>
<tr>
<td>Обхват пясти</td>
<td>18,4±0,11</td>
</tr>
<tr>
<td>Живая масса, кг</td>
<td>436,2±3,42</td>
</tr>
<tr>
<td>Индексы телосложения, %:</td>
<td></td>
</tr>
<tr>
<td>формата</td>
<td>104,3</td>
</tr>
<tr>
<td>обхват груди</td>
<td>124,9</td>
</tr>
<tr>
<td>костистости</td>
<td>12,9</td>
</tr>
<tr>
<td>массивности</td>
<td>150,4</td>
</tr>
</tbody>
</table>

Данные таблицы 1 свидетельствуют, что дойные кобылы новоалтайско-казахских помесей очень рослые (148,4 см) с удлиненным туловищем (158,5 см), глубокой грудной клеткой (191,5 см), отличной костистостью (20,3 см), высокой живой массой (506,0 кг), индекс массивности-154,7.
Казахские кобылы типа жабе, имея достаточный рост 142,7 см, косую длину туловища 148,8 см, обхват груди 178,3 см и живую массу 436,2 кг несколько уступают новоалтайско-казахским помесям по живой массе на 69,8 кг (16,0%), тем не менее отличаются высоким индексом массивности-150,4.

Кобылы доно-казахских помесей отличаются гармоничным сложением, имеют не высокий обхват груди (174,0 см), характерный для верхового склада экстерьера, несколько уступают первым двум группам кобыл по живой массе соответственно на 23,6 кг (5,4%) и на 93,4 кг (22,6%). У кобыль этой группы не высокий индекс массивности, равный 128,9.

По промерам высоты в холке, косой длине туловища и обхвату груди кобылам всех трех групп присущи более стабильные показатели коэффициента изменчивости (от 1,04 до 1,49). Более высокие коэффициенты изменчивости наблюдались у кобыл по живой массе (2,39-2,54), затем по обхвату пасти (от 1,85 до 2,25). В дальнейшей селекционно-племенной работе отбор лосей по живой массы и костистости даст положительные результаты по улучшению этих признаков.

Дойные кобылы всех трех групп имели крепкий тип конституции, хорошо развитую грудную клетку, округлые ребра, растянутый корпус. О крепком типе конституции кобыл можно судить по развитию костяка. Так, индекс костистости составил: у казахских кобыл типа жабе-12,9, новоалтайско-казахских помесей - 13,7 и у доно-казахских помесей-13,4.

Молочная продуктивность. Исследования, проведенные в 2016-2017 гг на стационарной кумысной ферме крестьянского хозяйства «Алтай» показали, что кобылы разных генотипов имели неоднинаковую молочную продуктивность. Более высокой молочной продуктивностью в пастибничьих и конносно-пастибничьих условиях содержания обладают новоалтайско - казахские помеси. Затем в порядке убывания идут казахские кобылы типа жабе и матки доно-казахских помесей (таблица 2).

<table>
<thead>
<tr>
<th>Показатели</th>
<th>Место лактации (2016-2017 гг)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Май II</td>
</tr>
<tr>
<td>Каракульские типы жабе</td>
<td></td>
</tr>
<tr>
<td>X_{m}</td>
<td>9,1±0,37</td>
</tr>
<tr>
<td>CV</td>
<td>18,1</td>
</tr>
<tr>
<td>Новотоно-казахские помеси</td>
<td></td>
</tr>
<tr>
<td>X_{m}</td>
<td>9,3±0,50</td>
</tr>
<tr>
<td>CV</td>
<td>16,9</td>
</tr>
<tr>
<td>Доно-казахские помеси</td>
<td></td>
</tr>
<tr>
<td>X_{m}</td>
<td>7,2±0,29</td>
</tr>
<tr>
<td>CV</td>
<td>17,9</td>
</tr>
</tbody>
</table>

Из данных таблицы 2 видно, что лактационная кривая по месяцам лактации у кобыл всех трех групп заметно изменилась. Более высокий фактический надой кобылы показали на 2-3 месяце лактации, затем удой постепенно снижался, причем более резко к концу лактации.

У доных казахских кобыл жабе и новоалтайско-казахских помесей после 2 месяца лактации идет снижение индивидуальной изменчивости удоя, который достигает наименьшего показателя и казахских кобыл типа жабе (15,1), у новоалтайско-казахских помесей на пятом-15,5 и у доно-казахских помесей на четвертом-17,3 месяце лактации, после чего наблюдается увеличение коэффициента изменчивости, особенно резко на 7 и 8 месяце лактации.

Наши исследования показали, что кобылы разных генотипов имели неоднинаковую молочность (таблица 3).

Из данных таблицы 3 видно, что за 214 дней лактации молочная продуктивность новоалтайско-казахских помесей составила 3167,2 л, казахских кобыл типа жабе-3103,0 л и доно-казахских помесей-2632,2 л.

Товарный удой, полученный от кобыл первой группы, составил 1482,2 л, второй группы - 1513,4 л и третий - 1267,8 л. Удой новоалтайско-казахских помесей превышает на 2,1% или на 31,2 л чем казахских кобыл типа жабе, на 19,4% или на 245,8 л больше по сравнению с доно-казахскими помесами.
<table>
<thead>
<tr>
<th>Группы кобыл</th>
<th>Фактический улей за день</th>
<th>Молочная продуктивность за сутки</th>
<th>Живая масса, кг</th>
<th>На 100 кг живой массы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Казахские типа жабе</td>
<td>1482,2±39,3</td>
<td>3103,0±89,6</td>
<td>436,2</td>
<td>711</td>
</tr>
<tr>
<td>Новоалтайско-</td>
<td>1513,4±52,9</td>
<td>3167,2±108,5</td>
<td>506,0</td>
<td>626</td>
</tr>
<tr>
<td>казахские помеси</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Доно-казахские помеси</td>
<td>1267,6±35,3</td>
<td>2632,2±73,6</td>
<td>412,6</td>
<td>638</td>
</tr>
</tbody>
</table>

Однако по индексу молочности (в расчете на 100 кг живой массы) кобылы занимают несколько иное положение, чем по абсолютному показателю. Этот показатель наибольшим оказался у казахских кобыл типа жабе (711 кг), затем у доно-казахских помесей (638 кг) и у новоалтайско-казахских помесей (626 кг). Эти данные согласуются с исследованиями профессора Барминцева Ю.Н. [12], который отмечает, что лучшими показателями по индексу молочности отличаются местные породы как казахская, башкирская и новокиргизская, чем тяжеловозные, рысистые и верховые породы. Он считает, что такое ценное качество лошадей местных пород необходимо сохранять и совершенствовать в процессе племенной работы.

Химический состав молока кобыл. Исследования химического состава молока кобыл разных генотипов представляют большой научный и практический интерес, так как на основании этих данных возможно осуществить оценку пород и разрабатывать пути их дальнейшего совершенствования.

Сведения о химическом составе молока кобыл разных генотипов приведены в таблице 4.

Из данных таблицы 4 видно, что в молоке казахских кобыл типа жабе (10,68), новоалтайско-казахских помесей (10,50) сухого вещества содержится больше, чем в молоке доно-казахских помесей (10,23).

Наиболее высокое содержание жира в молоке обнаружено также у казахских кобыл типа жабе (1,79). Второе место по жирномолочности занимают новоалтайско-казахские помеси (1,64), затем доно-казахские помеси (1,52). Известно, что при выработке кумыса из кобыльего молока жир остается практически без изменений, так как нормальная микрофлора кумыса не вырабатывает фермента липазы, разщепляющего жир на глицерин и жирные кислоты. Это примечательно тем, что составные части молочного жира кобыл, особенно линоловая, линоленовая и арахидоновая кислоты, обладающие витаминными свойствами и не синтезирующиеся в организме человека и животных, полностью используются при употреблении кумыса [13, 14].

<table>
<thead>
<tr>
<th>Группы кобыл</th>
<th>Показатели</th>
<th>Содержится в молоке, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>сухое вещество</td>
</tr>
<tr>
<td>Казахские типа жабе</td>
<td>Хм,пк</td>
<td>10,68±0,06</td>
</tr>
<tr>
<td>Сш</td>
<td>2,66</td>
<td>5,26</td>
</tr>
<tr>
<td>Новоалтайско-</td>
<td>Хм,пк</td>
<td>10,50±0,08</td>
</tr>
<tr>
<td>казахские помеси</td>
<td>Сш</td>
<td>2,50</td>
</tr>
<tr>
<td>Доно-</td>
<td>Хм,пк</td>
<td>10,23±0,05</td>
</tr>
<tr>
<td>казахские помеси</td>
<td>Сш</td>
<td>2,10</td>
</tr>
</tbody>
</table>

Содержание белка в молоке казахских кобыл типа жабе составляет 2,02%, у новоалтайско-казахских помесей 2,01%, то есть практически одинаковые, в то время как у доно-казахских помесей всего лишь 1,87%.

По содержанию мочочного сахара в молоке кобыл на первом месте стоят новоалтайско-казахские помеси (6,51), затем идут казахские кобылы типа жабе (6,48) и доно-казахские помеси (6,32). Молочный сахар играет большую роль в производстве кумыса, является основным источником питания для молочнокислых бактерий. Под действием эндоферментов бактерий
молочный сахар гидролизуется с образованием различных веществ, которые придают кумысу определенный вкус и аромат. Поэтому важно иметь сравнительные данные о содержании этого компонента в молоке кобылы разных генотипов [15, 16, 17].

Содержание нежировых сухих веществ играет немаловажную роль при качественной оценке молока. Если содержание жира в кобыльем молоке подвергается наименьшим изменениям под воздействием различных факторов, то количество СОМО колеблется в относительно узких пределах. По нашим данным, в молоке кобыл разных генотипов содержание СОМО было различным. Так, в молоке казахских кобыл типа жабе СОМО больше на 2,14 % по сравнению с новоалтайско-казахскими помесами и на 2,02 % чем у доно-казахских помесей.

Наиболее высокая изменчивость по составу молока наблюдалась у казахских кобыл типа жабе в сравнении с помесными животными, что представляет основу для ведения эффективного отбора по этим признакам при выборе пород для сезонных и стационарных кумысных ферм.

Взаимосвязь составных компонентов молока с удоем и между собой. Нами проанализирована взаимосвязь между величиной удоя, содержанием жира, белка и молочного сахара в молоке кобыл за лактацию, а также тип связи между этими компонентами (таблица 5).

Из данных таблицы 5 видно, что коэффициент корреляции между величиной удоя и содержанием в нем жира имеет отрицательное значение в молоке у казахских кобыл типа жабе и новоалтайско-казахских помесей, за исключением молока, полученного от доно-казахских помесей (+0,084), где связь выражается положительным, но очень низким показателем. Наибольшая величина отрицательного коэффициента корреляции получена в группе новоалтайско-казахских помесей (-0,388), затем у казахских кобыл типа жабе (-0,371).

Между величиной удоя и содержанием белка в молоке корреляция тоже отрицательная, за исключением казахских кобыл типа жабе, где коэффициент корреляции близок к нулю, но имеет положительный знак (+0,076).

Отрицательная связь наиболее выражена по группе новоалтайско-казахских помесей, где коэффициент корреляции имеет величину (-0,198), а у доно-казахских помесей невысокие (-0,071).

Таблица 5 — Коэффициенты корреляции между средними показателями компонентов молока и удоем у кобыл разных генотипов

<table>
<thead>
<tr>
<th>Показатели</th>
<th>СОМО</th>
<th>Жир</th>
<th>Белок</th>
<th>Сахар</th>
<th>Удель</th>
</tr>
</thead>
<tbody>
<tr>
<td>Казахские кобылы типа жабе</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сухое вещество</td>
<td>+0,115</td>
<td>+0,408</td>
<td>+0,366</td>
<td>+0,072</td>
<td>+0,072</td>
</tr>
<tr>
<td>СОМО</td>
<td>+0,252</td>
<td>+0,271</td>
<td>+0,038</td>
<td>+0,127</td>
<td></td>
</tr>
<tr>
<td>Жир</td>
<td></td>
<td>+0,231</td>
<td>+0,247</td>
<td>-0,371</td>
<td></td>
</tr>
<tr>
<td>Белок</td>
<td></td>
<td></td>
<td>-0,013</td>
<td>+0,076</td>
<td></td>
</tr>
<tr>
<td>Сахар</td>
<td></td>
<td></td>
<td></td>
<td>-0,526</td>
<td></td>
</tr>
<tr>
<td>Сахар</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Новоалтайско-казахские помеси</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сухое вещество</td>
<td>+0,353</td>
<td>+0,722</td>
<td>+0,839</td>
<td>+0,686</td>
<td>-0,537</td>
</tr>
<tr>
<td>СОМО</td>
<td>+0,021</td>
<td>+0,306</td>
<td>+0,326</td>
<td>-0,121</td>
<td></td>
</tr>
<tr>
<td>Жир</td>
<td></td>
<td>+0,397</td>
<td>+0,403</td>
<td>-0,388</td>
<td></td>
</tr>
<tr>
<td>Белок</td>
<td></td>
<td>+0,572</td>
<td>-0,198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сахар</td>
<td></td>
<td></td>
<td>-0,020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Доно-казахские помеси</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сухое вещество</td>
<td>+0,680</td>
<td>+0,367</td>
<td>+0,049</td>
<td>+0,036</td>
<td>+0,382</td>
</tr>
<tr>
<td>СОМО</td>
<td>+0,012</td>
<td>+0,551</td>
<td>-0,018</td>
<td>+0,463</td>
<td></td>
</tr>
<tr>
<td>Жир</td>
<td></td>
<td>+0,129</td>
<td>+0,015</td>
<td>+0,084</td>
<td></td>
</tr>
<tr>
<td>Белок</td>
<td></td>
<td>+0,059</td>
<td>-0,071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Сахар</td>
<td></td>
<td></td>
<td>-0,127</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Связь между удоем и молочным сахаром во всех трех группах кобыл отрицательная. Наиболее она выражена у казахских кобыл типа жабе, где коэффициент корреляции имеет высокую величину (-0,526). А у новоалтайско-казахских и доно-казахских помесей коэффициенты корреляции невысокие (от -0,002 до -0,127).

Коэффициент корреляции между удоем и СОМО у казахских кобыл типа жабе (+0,127) и доно-казахских помесей (+0,463) имеет положительное значение, тогда как у новоалтайско-казахских помесей отрицательное (-0,121).
Взаимосвязь между содержанием жира и сухого вещества во всех трех группах кобыл была положительная. Так, у новоалтайско-казахских помесей этот показатель равен +0,722, у казахских кобыл типа жабе +0,408 и у доно-казахских помесей +0,367.

Коэффициенты корреляции между белком и другими компонентами молока также как и между жиром во всех случаях положительны, за исключением белок-сахар у казахских кобыл типа жабе, который имеет отрицательное значение, но близкое к нулю (+0,113).

Рассматривая взаимосвязь величины удои и процента жира в молке по месяцам лактации видно, что у кобыл разных генотипов она проявляется по разному (таблица 6).

Из данных таблицы 6 видно, что за лактацию связь между величиной удои и процентом белка в молоке кобыл выражается небольшими отрицательными коэффициентами корреляции. Высокая отрицательная связь проявляется у казахских кобыл типа жабе на третьем (-0,298), пятом (-0,456), шестом (-0,320) и седьмом (-0,397) месяцах лактации. У новоалтайско-казахских помесей на третьем (-0,238), четвертом (-0,439) и седьмом (-0,794) месяцах лактации, у доно-казахских помесей только на восьмом месяце лактации (-0,377).

Таблица 6 – Взаимосвязь величины удои, процента жира, белка и сахара по месяцам лактации

<table>
<thead>
<tr>
<th>Группа кобыл</th>
<th>Коэффициент корреляции по месяцам лактации</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>II</td>
</tr>
<tr>
<td>Удой-белок</td>
<td></td>
</tr>
<tr>
<td>Казахские кобылы типа жабе</td>
<td>+0,086</td>
</tr>
<tr>
<td>Новоалтайско-казахские помеси</td>
<td>-0,186</td>
</tr>
<tr>
<td>Доно-казахские помеси</td>
<td>-0,173</td>
</tr>
<tr>
<td>Удой-жир</td>
<td></td>
</tr>
<tr>
<td>Казахские кобылы типа жабе</td>
<td>-0,153</td>
</tr>
<tr>
<td>Новоалтайско-казахские помеси</td>
<td>+0,147</td>
</tr>
<tr>
<td>Доно-казахские помеси</td>
<td>-0,043</td>
</tr>
<tr>
<td>Удой-сахар</td>
<td></td>
</tr>
<tr>
<td>Казахские кобылы типа жабе</td>
<td>-0,158</td>
</tr>
<tr>
<td>Новоалтайско-казахские помеси</td>
<td>-0,491</td>
</tr>
<tr>
<td>Доно-казахские помеси</td>
<td>-0,017</td>
</tr>
</tbody>
</table>

Высокие отрицательные коэффициенты корреляции между удоем и процентом жира у казахских кобыл типа жабе наблюдаются на третьем (-0,807), четвертом (-0,509), пятом (-0,310) и на восьмом (-0,256) месяцах лактации. У новоалтайско-казахских помесей высокая отрицательная связь была на четвертом (-0,375) и пятом (-0,232) месяцах лактации, а у доно-казахских помесей на третьем (-0,320) и пятом (-0,207) месяцах лактации.

Взаимосвязь между удоем и сахаром во всех группах кобыл за лактацию была отрицательной. У казахских кобыл типа жабе более высокая положительная связь (+0,127) наблюдалась только на шестом месяце лактации, а новоалтайско-казахских (+0,745) на седьмом и доно-казахских помесей (+0,205) на четвертом месяце лактации.

Данные анализа соотношения белок-жир в молоке кобыл разных генотипов приведены в таблице 7.

Из приведенных данных таблицы 7 следует, что наиболее высокое соотношение белок-жир наблюдается в молоке казахских кобыл типа жабе, в среднем за семь месяцев лактации это соотношение равно 0,88 с колебаниями по ходу лактации от 0,76 на седьмом до 0,96 на четвертом месяцах лактации.

У более жидкокомлочных доно-казахских помесей это соотношение, за опытный период составляло 0,86 с колебаниями от 0,70 на четвертом до 0,94 на восьмом месяцах лактации.

По группе новоалтайско-казахских помесей отношение белок-жир в молоке было ниже, чем в остальных группах и равнялось 0,81 с колебаниями от 0,76 на седьмом месяце лактации до 0,89 на четвертом месяце лактации.
Таблица 7 - Соотношение процента белка и жира в молоке кобил разных генотипов по месяцам лактации

<table>
<thead>
<tr>
<th>Месяц лактации</th>
<th>Группы кобыл</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>казахские типы</td>
</tr>
<tr>
<td></td>
<td>жабе</td>
</tr>
<tr>
<td>II</td>
<td>0,90</td>
</tr>
<tr>
<td>III</td>
<td>0,92</td>
</tr>
<tr>
<td>IV</td>
<td>0,96</td>
</tr>
<tr>
<td>V</td>
<td>0,88</td>
</tr>
<tr>
<td>VI</td>
<td>0,80</td>
</tr>
<tr>
<td>VII</td>
<td>0,76</td>
</tr>
<tr>
<td>VIII</td>
<td>0,87</td>
</tr>
<tr>
<td>В среднем</td>
<td>0,88</td>
</tr>
</tbody>
</table>

Таким образом, увеличение удоя кобыл за лактацию может сопровождаться снижением жирности молока при сохранении его белковости. При повышении процента жира может снизиться удой, тогда как процент белка в одних случаях будет повышаться, если жирность молока не превышает определенного уровня, но может оставаться на одном уровне или понижаться в случаях резкого повышения жирномолочности.

Вместе с этим по месяцам лактации наблюдаются большие вариации в соотношении изучаемых признаков в степени и характере зависимости между ними, что очевидно, обусловлено разной и относительно самостоятельной их изменчивостью.

Выводы

В условиях стационарной кумысной фермы крестьянского хозяйства «Алтай» молочная продуктивность и химический состав молока кобыл разных генотипов неодинаковы. Более продуктивными являются казахские-козькие помеси (3167,2 л) и казахские кобылы типа жабе (3103,0 л), чем доно-козькие помеси (2632,2 л). По индексу же молочности на первом месте стоит казахские кобылы типа жабе (711 кг), затем доно-козькие помеси (638 кг) и новоaltaiskoo-kazakhские помеси (626 кг).

По содержанию жира, белка, СОМ, сухого вещества в молоке казахские кобылы типа жабе выгода отлично отличаются от кобыл новоaltaiskoo-kazakhских и доно-kazakhских помесей.

Изменчивость основных показателей удоя у кобыл невысока и составляет от 15,1 до 28,7 %, по содержанию жира в молоке от 5,06 до 7,88 %, белка от 4,66 до 6,10 %, сахара от 1,27 до 3,37 %.

Связь между содержанием жира и белка в молоке кобыл положительная, но не одинаковая (от +0,129 до +0,397). Отбор по жирномолочности не обеспечивает одновременного увеличения содержания белка в молоке. Поэтому селекцию с лошадьми целесообразно вести не на максимальное развитие отдельных признаков, а на оптимальное их сочетание.

Литература

179