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INTERCONNECTION OF HEAT AND MECHANICAL ENERGY
IN THE DESTRUCTION OF MATERIALS

Abstract. The destruction of solid materials is possible only due to heat expsure at the melting temperature.
However, at low temperatures, the destruction may be achieved by mechanical energy impact which is supplemented
to the thermal energy of the mill charge. The latter is described by the Boltzmann distribution, which may be applied
to a solid state. In the framework of this distribution we can determine the probability of overcoming any energy
barrier, taking into account thermal energy of the chaotic motion of particles.

On this basis, a formula to calculate the probability of destruction of matter by the summing action of thermal
and mechanical energy was obtained. This ensures the relative decrease in the £, activation barrier.
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Introduction

It is known, that the destruction of solid materials is possible without mechanical interaction only due
to thermal energy at the melting temperature. The same effect can be achieved by supplementing the
existing heat energy material by mechanical impact at lower temperatures. This can be proved by means
of Boltzmann distribution (energy spectrum) on the kinetic energy of the random motion of particles, and
it is applicable to the solid state, as shown in the book of M.A. Leontovich [1].

Equal distribution of particles on kinetic energy of chaotic (thermal) motion depending on the
temperature was established by Boltzmann in the following form [2]

P, =N, /N =exp(-¢, /kT) iexp(—g,-/kT), (1)
i=1

where P; and N, — fraction and number of particles with energy, g; NV — total number of particles; & —
Boltzmann's constant (named by Max Planck [2]); m — the number of considering energy levels.
Magnitude P; can be interpreted as probability detection of energy particles &;.

One of the properties of this distribution is the inhibition on the greater population of the future level
of energy in comparison with the previous condition on

P;; < P;. Another feature is to increase the levels of uneven settlement with increasing temperature.
Thus, during 0 K, the first level is full, and during 7" — oo full settlement of all levels of uniformity can be
reached P; = 1/m u m = N [3-5]. Such distribution for two arbitrary temperatures is given on Figure 1.

It has non-increasing character, in other words, the following condition is preserved P < P, With
the rise of the temperature, distribution becomes more even (at 77 — oo distribution becomes almost
horizontal and coincides with the x axis). In all cases, the following condition is preserved

m<N

SP=1 @)
i=1
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P; — fraction of particles, which have energy ¢, = Ae/2, J;, Ae — variability interval g,
(in this case Ae = 10°° I; ¢, — average energy of particle on i energy level, J. Solid line for temperature 1000 K,

dotted line for 2000 K. ¢, — potential barrier

Figure 1 — Boltzmann distribution (energy spectrum)

In turn, the restriction m < N is determined by the number of considering energy levels cannot exceed
the number of holders of this feature of their distinctiveness, in other words, the number of particles [5].

In order to determine the fraction of particles which have energy more or less than potential barriere,,
it is necessary to sum the distribution of probabilities ; which is higher that barrier &,

Py =Y exp(—¢&; [KT) | 3 exp(- &, /kT). ©)
a 1

where a — the number of energy levels corresponding to the activation energy. In order to provide
certainty of number a, a whole-number value based on the following ratio should be set

Ae=¢g,/a, 4)
where Ag — regular energy interval — variation step &; .
For a more exact expression P, , we have to switch from the discrete energy distribution to

continuous one, or, to switch from summation to integration. First of all, the numerator and denominator
of the fraction (3) are multiplied by As and this factor is put under the summation sign:

P, :iAgexp(—g,-/kT)/iflAgexp(—gi/kT). (5)

when m — oo and Ag — de , the transition into integral form is provided
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P, = oJ?exp(— g/kT)de oJ?exp(— g/kT)de. (6)
0

Ea

This expression reveals the geometric meaning of the function P, (see Fig. 1): it is equal to the arca
under the curve P = f (&) (this area is the integral of this function) on the right side from g, to the arca
under the whole curve. It is obvious from Fig. 1 that with the rise of temperature, the arca under the curve
on the right side from g, increases, on the left side decreases, that is why the fraction of over barrier
particles must increase.

From mathematical point of view, this result is obtained after taking integrals. Thus, primitive
function for indefinite integral Jexp[-&/(kT)]de is following

F =—kTexp|- &/(kT')]+ const . (7)

When taking improper integrals in (6) the integration constant is reduced, so integral in the
numerator is

o0

Iexp[— &/(kT)kde =|- kT exp|- 8/(kT)]:1 = kT exp|- ¢, /(kT)). )

&a

The integral in the denominator is

o0

[expl-&/(kT)lde =|- kT expl-£/(kT)]; = kT ©)

0

In general, desired expression is
P, =exp|-¢,/(kT)]. (10)

resulting the need to increase the fraction of over barrier particles with increasing temperature.

This expression is used as a constituent of a constant velocity even in the Arrhenius equation
approximation, and then in terms of more stringent expressions of formal kinetics [6]. No less important is
the integral (9), because it makes sense for average integral thermal energy of the particle at a temperature
T, with directly comparison of energy barrier g, in formula (10). In terms of moles, this formula has the
form of

P, =exp|l- £, /(RT)]. (1)

of which RT acquires a meaning of average integral heat energy mole of a substance at a temperature 7.

Generally, according to the theorem of the average value of function, its actual, mathematically strict
value can be determined as the average integral [7]. Therefore, we will call the RT value as average
thermal energy.

Detailed consideration of the energy behavior of individual particles in the framework of the
Boltzmann distribution can be understood as the microscopic approach; taking into account the average
thermal energy as a macroscopic one. Apparently, in this connection of the two extremes, lies enduring
value of such representation of complex systems and the possibility to solve specific problems [8], which
comprise the issue of adequate displaying the impact of mechanical energy to the destruction of materials.

Interpretation of collapsibility of materials under the summing action of thermal and
mechanical energy
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In our opinion, the main reason for failure of solution for this problem, considered in this paper [9], is
excessive direct comparison of mechanical energy E,,.. with bound energy of particles £, which consists
of the subtraction of the first from the second one, for various options for activation destruction

Lk, —F
Pa:exp —% . (12)

Here, during increasing of mechanical energy, the probability of destruction of structure increases,
however E,.. > I, which in real terms of destruction may be the norm, but values might be senseless P,>.
In addition, during such expression of activation factor, thermal and mechanical energy are opposed to
cach other.

Apparently, considering way of expression of activation energy is taken from the molecular kinetics,
which aim is the reduction of activation energy through the use of catalysts.

Meanwhile, during impact of mechanical energy on substance, it is added to the system of thermal
energy rather than subtracted from the energy of the particles which may be due to overall impact of
thermal and mechanical energy to the substance.

In terms of non-equilibrium addition of mechanical energy, this can be represented as a shift of all
energy distribution to the same value for all particles of mechanical energy due to the elastic properties of
crystal (Fig. 2).

1.0
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E;—energy of particles; £, ow..er energy, equal to energy of destruction activation £,

E,..— mechanical energy; P; — fraction of particles with E; energy before impact (1)
with energy E; + E,,,.. in moment of mechanical impact (2).

Figure 2 — Shift of particles energy by Boltzmann distribution during
mechanical impact (per mole). The arrows indicate an instantaneous increase in arbitrary particle energy

We cannot exclude a partial relaxation of the system, accompanied by raise of temperature. The
probability to destruct some energy barrier £, will increase not by absolute, but by relative lowering of the

45 =——




Joxnaovr Hayuonanvroti axademuu Hayk Pecnyonuxu Kasaxcman

barrier due to the increase of the total energy of all the particles, resulting over barrier particles (indicated
by the arrows movement).

Thus, according to physical reasons, the destruction probability should be expressed as counteracting
result of heat and mechanical energy amount to activation barrier energy of substance destruction:

E
Pazexp —ﬁ . (13)

mec

Here, unlike (12), the appearance of senseless results is excluded for any R7 and F,.. , and the
provision is guaranteed 0 < P, < 1, while £, >> RT the role of thermal energy becomes insignificant.

Since the dimension RT, like £, is expressed by specific molar value (J/mol), it is necessary to bring
the dimensions and mechanical energy. It's enough to take into account the number of moles in depleting
substance and include the value of the mechanical energy to this number:

E
Fo=epl ————r | (19
RT + ¢

m

where m — mass of depleting substance, kg; M — its molar mass, kg/mol; £ — applying mechanical energy,
J.

In fact, all the calculations are valid for any type of influencing energy — sound, radiant (especially,
laser), but the most common is the blow energy. We show this in the example of the application of the
formula (14) in the new theory of ore reduction, more adequately reflects the probabilistic nature of the
process [10-16].

The role of the activation factor in the probabilistic theory of reduction

In this theory, the reduction speed is considered as a production of the probabilities of successive
events of joint presence of grinding and grinded bodies in the extent of their randomized mixture
(concentration factor, P..,.), their spatial compatibility — contact (steric factor, Py), the direct impact of the
grinding bodies in the mill material (activation factor P,) at periodic sustainability of these events
(frequency factor, Z, ¢™):

V=ZPory Pom Pa. (15)

All factors are revealed through specifications on mills, physical constants and operational
parameters of grinding process, and also through the blow energy of ball hitting the grain. Thus, the
disclosure activation factor (14) leads to the formula

E

P, =exp| - g (16)

RT + MgD(y,, /73 )(dm/dj)3 ’

where [ - activation energy, adopted for model calculations in equal heat of quartz fusion (the main

rock-forming mineral ore) 9170 J/mole; R — universal gas constant, equal to 8,31441 J/(mole'K);, 7' —
absolute temperature, equal to room temperature, 298 K; M — molecular weight of quartz, 0,0601
kg/mole; g — gravitation acceleration, 9,807 m/sec’; [) — bottom diameter of mill, for model calculations
taken from industrial mill characteristics equal to 3,36 m; y, and ¥, - density of material and ore,
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accordingly 7874 and 2650 kg/m’; d, — ball diameter, equal to 0,06 m in average; d; — size of grains of j
fraction.

The impact energy is taken into account through the equivalent to its potential energy of the ball,
weight m,,, during fall from a height # = D [14] by the formula

Eopoe =mp g h. 17)
Therefore, it follows from the formula (16) that with decreasing of grain size and increasing of the

ball diameter, the destructibility of grains sharply rises. However, this counteracts by the steric (shield
factor), which according to geometric ratio of the ball and the grain gets expression

2
d ; d ;
Po=4—L—-| L] | (18)

Here, in contrast, the magnitude of this factor of balls is reduced during the same change in the grain
size. Their combined effect is illustrated in Figure 3.

Pa PCT

Pa;Pst;
PaPst

PoPe ’

L L ' 1 1 O
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Figure 3 — The dependence of activation and steric factors and their joint effect in each cycle of collisions from
the grain size

The findings prove the dominance of the steric factor in the total destruction of all insignificant small
classes ranging from 10 to 10™ with all the destructive power of the direct impact of the ball to the grain.
A significant increase in degradability by unfastening of steric factor begins only with 10° m, but the
weakening and activation leads to the formation of degradability on the level of 13.3% for the grain size
of 3 mm. Outside this zone, the energy of ball falling spent literally wasted either due to misses in the fine
grains from the "dead" (screened) area, or because of a lack of power hitting to break the larger grains.

For the first time in the framework of probability of grinding theory, the extremely low energy
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efficiency of the process that requires a minimum 90% of the costs of mining and metallurgical cycle is
explained. The result can be considered as further evidence of the enduring value of the statistical
distribution (energy spectrum) of Boltzmann, still preserving its topicality for various fields of science and
practice [10].

Conclusion

Boltzmann distribution enables to determine the probability of overcoming any energy barrier by the
thermal energy of chaotic motion of particles. This effect can be supplemented by taking into account the
applied mechanical energy through summing it to heat. In this case the resulting formula is a probability
of a substance destruction at a total impact of heat (R7) and mechanical (%,..) energy

ECI
RT+E

mec

P, =exp| -

and provides a relative decrease in the activation barrier F,. This activation factor is used in the
probabilistic theory of materials grinding, and the reason of low energy efficiency of this high input
process is revealed.

REFERENCES

[1] Malyshev V.P. One World. Spontaneity. Controllability. Freedom. Parasitism. M.: Nauchnyj mir, 2012, 216 p. (in
Russ.).

[2] Bol'eman L. Selected works. The molecular-kinetic theory of gases. Thermodynamics. Statistical mechanics.
Radiation Theory. General questions of physics. M.: Nauka, 1984, 590 p. (in Russ.).

[3] Malyshev V.P. Fundamentals of thermodynamics of matter at an infinitely high temperature. Alma-Ata: Nauka, 1986,
64 p. (in Russ.).

[4] Nurmagambetova A.M., Malyshev V.P., Mamjachenkov S.V. Vestnik UGTU-UPI, 2004, 5(35), 215-218. (in Russ.).

[5] Malyshev V.P. Probabilistic and deterministic mapping. Almaty: Fylym, 1994, 376 p. (in Russ.).

[6] Jemanujel' N.M., Knorre D.G. Chemical Kinetics Course. Textbook for chemical faculties. Ed. 3rd, revised and
additional. M.: Vysshaja shkola, 1974, 400 p. (in Russ.).

[7] Bronshtejn M.N., Semendjaev K.A. Handbook of mathematics for engineers and technical colleges students. 13th ed.,
revised. M.: Nauka, 1987, 544 p. (in Russ.).

[8] Chertin'jani K. The theory and applying of the Boltzmann equation. Trans. from English. M.: Mir, 1978, 496 p. (in Russ.).

[9] Hodakov G.S. Physics of grinding. M.: Nauka, 1972, 240 p. (in Russ.).

[10] Malyshev V.P. Obogashhenie rud, 1995, 4-5, 4-14. (in Russ.).

[11] Malyshev V.P., Turdukozhaeva (Makasheva) A.M., Kajkenov D.A. Obogashhenie rud, 2012, 4,29-35. (in Russ.).

[12] Malyshev V.P. Jenciklopedija inzhenera-himika, 2013, 9, 54-59; 10, 56-60; 11, 44-52. (in Russ.).

[13] V.P. Malyshev, A.M. Turdukozhayeva. Journal of Materials Science and Engineering A,2013, 2, 131-144. (in Eng.)

[14] Malyshev V.P., Turdukozhaeva A.M., Ospanov E.A., Sarkenov B. Evaporation and boiling simple substances. M.
Nauchnyj mir, 2010, 304 p. (in Russ.).

[15] Zhuhovickij A.A., Shvarcman L.A. Physical chemistry: textbook for high schools - 4th ed., revised and additional. M.:
Metallurgija, 1987, 688 p. (in Russ.).

[16] Malyshev V.P., Makasheva A.M., Zubrina Ju.S. Obogashhenie rud, 2016, 1, 22-26. (in Russ.).

JUTEPATYPA

[1] Mampmes B.IL Emabnii mup. CtuxuitHocTs. Y1ipaBisieMoctb. CBodoa. lapasurusm. — M.: Hayunsrit mup, 2012. —
216¢.

[2] bompivman JI. U30panHble Tpyabl. MosekyIsIpHO-KUHETHYECKas: Teopusl ra3oB. TepmojuHaMuka. CTaTHCTHYECKAs.
Mexanuka. Teopust nzmyuenvst. O6mue Borpockl ¢rmuku. — M.: Hayka, 1984. — 590 c.

[3] Mampmies B.I1. OcHOBBI TepMOJMHAMUKY BeIlecTBa IIPH OECKOHEUHO BBICOKOH TemriepaType. — Anma-Ata: Hayka,
1986. — 64 c.

[4] Hypmaramteroa A.M., Mamsrmie B.11., Mamsruenko C.B. DHepreTutdeckre acnieKThI pactpeseneHus bombivana /
Bectauk YI'TY-YIIU. —2004. — No 5(35). - C. 215-218.

[5] Mamnpmies B.11. BepostHoCTHO-IeTepMUHUPOBaHHOE 0ToOpaXkeHne. — AnMatel: Feutbiv, 1994, — 376 c.

[6] Owmanysm H.M., Kaoppe JH.I. Kypc xumirdeckoit kKuHeTHKH. Y4eOHHUK ISl XUMHYECKUX (akyiasTeToB. M3m. 3-e,
niepepal. u jiort. — M.: Beicmiad nikona, 1974. —400 c.

— g ——



ISSN 2224-5227 Ne5.2016

[7] bponmreitn M.H., Cemenpse K.A. CripaBoyHHK 110 MareMaTUKe UL UHKEHEPOB M yUallxcs BTy30B. 13- usg.,
ucnpasieHHoe. — M.: Hayka, 1987. — 544 c.

[8] UYeprunpsxu K. Teopust u npunoxeHus ypaHeHus bonbivana. [lep. ¢ anrm. — M.: Mup, 1978. — 496 c.

[9] Xopakos I'.C. ®usnka uzmensueHus. — M.: Hayka, 1972, — 240 c.

[10] Mampmmies B.11. HoBblif acniekT B Teopuy M3MENbUSHUS Py U YIIPaBIEHHUS STUM TporieccoM // OGorartienve pya. —
1995. — Ne 4-5. - C. 4-14.

[11] Mampmies B.IL, TypaykoxaeBa (MakarieBa) A.M., KalikeHos /I.A. Pa3BuTre Teopuu U3MENBUECHUS PYJl HA OCHOBE
MOJIEKYJIPHOU TEOPHH COyIapeHuit i (popMaTbHOM KMHETHKH MOCIeIoBaTeNbHBIX peakiii // OGorarenue pya. — 2012. — Ne 4.
—C.29-35.

[12] Manemmies B.I1. MonekysipHBI TapM U TpeMsIiiee TopHano GapaGaHHBIX MMAapOBBIX METHHUIT // DHIMKIOE S
uHxeHepa-xuMuka. —2013. —Ne 9. — C. 54-59; —No 10. — C. 56-60; — Ne 11. — C. 44-52.

[13] V.P. Malyshev, A.M. Turdukozhayeva. What Thunder There and is not Heard When Using Ball Mills? // Journal of
Materials Science and Engineering A. —2013. - V. 3. —Ne2.— P. 131-144.

[14] Mampmie B.IL, TypaykoxaeBa A.M., OcnianoB E.A., CapkeroB b. McnapseMocTs U KHAIIEHUE TIPOCTHIX BEIIECTB. —
M.: Hayunsnii mup, 2010. — 304 c.

[15] Kyxouikuit A.A., [IBapiman JLA. Ousndeckas xuMusl: YUeOHUK JUIS BY30B — 4-¢ U3L., niepepal. U JoI. — M.:
Merammyprus, 1987. — 688 c.

[16] Mampmies B.IIL, Maxkamepa A.M., 3yOpuna 1O.C. BimsHHe B3aUMHOTO IPOTUBOJEHCTBUS CTEPUUYECKOTO H
aKTHBAITMOHHOTO (aKTOPoB Ha 2PpHEeKTUBHOCTS Ipollecca u3Menbuenws // Oborarienue pya. —2016. Nel. —c¢. 22-26.

B.I1. Magsmmes, FO.C. 3y0puna, A.M. Makamesa
JK. O0inreB arsiHAAFbI XUMESI-METAILTY Prisi HHCTUTY T, Kaparauas! K., Kasakcran PecryOmikacet

MATEPUAJAAPABIH BYJITHYI KE3SIHAEI'T MEXAHUKAJIBIK
7KOHE KXbLITYJIBIK YJHEPTUSAHBIH O3APA BAWJIAHBICHI

AnHoTtamust. Tex epy TeMIIEpaTypachIHAAFHI JKbIIY 3Cepi eceOiHCH KATTHI MAaTEPHANIAPABIH OYIIHY1 MYMKIH.
Amaiina ToMCH TeMIepaTypaga OYJIiHY MCXAHWKABIK ©3apa OaHIaHBIC SHCPTHACHIHBIH KOMCTIMCH KTyl MYMKIH,
JKOHE JIE 071 YCAKTAIFaH MAaTSPHAIBIH JKbLTY JIBIK SHEPTHACHIHA TOIBIKTHIPELIAAbL. KaTThl KYHTe KoTaanyFa 00JIaThIH
BoxpMaHHBIH TapaTysl €H COHFBI OOJIBIN >Ka3blIaabl. OChl 06y IiH asChIHAA O6IICKTEPIiH PETCi3 KO3FAIy bIHIAFbI
SKBUTYJIBIK SHCPTHSIHBI €CKEPE OTBIPBIN, Ke3 KEJITCH JHCPICTHKAIBIK KEACPTiNEH 6Ty BIKTUMAJIBIFBIH AHBIKTAyFa
Oomagbl.

Ocpl Heri3ae 3aTTEKTEpAiH OYIiHY BIKTHMAIABUIBIFBIH €CENTEY YHIH (POPMyJa NIBIFAPBLIFAH, OJ >KBLTYIIBIK
JKOHE MEXAHUKAIBIK OSHEPTHSHBIH JKANIBl OCEp CTYIH €CKEpenl, ochumaiima F, AaxkTHBamms KeIepriciHiH
CAJIBICTBIPMAIIBI TOMEH/ICY IH KAMTAMAChI3 €TEI.

Tyiiin ce3mep: >KbLTyJIBIK SHEPTHS, MCXaHUKAJBIK JHEPTHS, 63apa OalnaHbIc, OyIiHY, boabIMaHHBIH TapaTysl,
BIKTUMAJIIBIK TCOPHS, aKTHBAISIIBIK (PAKTOP, yCaKray.

YK 622.8
B.II. Mamsmmes, FO.C. 3y0puna, A.M. Makamesa

XuMHKO-MeTaJy prudeckuii HHCTHTYT uMeHH JK. Abumesa, Kaparanma, Kazaxcran

B3AUMOCBA3b TEILIOBOW U MEXAHUYECKOW YHEPTHH
MPHU PA3PYIIIEHUH MATEPHAJIOB

AnHoTanua, PaspymicHHe TBEpABIX MATCPHATIOB BO3MOXKHO 33 CUCT TOJBKO TCIDIOBOTO BO3ICHCTBHA IPH
TEMICpaType IMIaBIcHUA. HO mpH HH3KHX TEMICPATYpaxX pPaspyMICHHC MOKET OBITh JOCTHTHYTO C IOMOTIBIO
SHEPrUU MEXAHMYECKOTO BO3ACHCTBHUS, KOTOPOE JOMOTHACTCA K TEIJIOBOM SHEPTHM H3MEIbHYAEMOro MaTepuaja.
Tlocnennsaa ommchIBAcTCS pacmpeacicHueM bomblMaHa, KOTOPOE BIOJHE MOKHO IPHMEHHTb K TBEPAOMY
COCTOAHHIO. B paMkax »3TOT0 pacmpeaciaCHHS MOKHO ONPCACIHTh BCPOSATHOCTh MPCOJOJICHHSA JFOOOTO
JHCPTCTHYCCKOTO Oaphepa, YUUTHIBAA TCILIOBYHO SHCPTHIO XA0THUCCKOTO ABIKCHHS YACTHIL,

Ha »31o0it ocHOBC BBIBEACHA (pOpMyNa IS pacucTa BEPOATHOCTH PA3PYIICHHA BCIICCTBA MO CYMMAPHOMY
BO3ACHCTBHIO TCIUIOBOH W MCXAHHYCCKOW 3JHCPrum. TeM CaMbIM OOCCIICUMBACTCSA OTHOCHTCIBHOC IMOHIDKCHHC
Oaprepa akTHBALHH F,.

Kirouernbie ¢j10Ba; TCIIOBAA SHCPTHSA, MCXAHHYUCCKAS SHCPTHA, B3AHMOCBSI3b, PA3PYIICHHUC, PACTIPCICICHHC
BonpuMaHa, BEPOATHOCTHAA TCOPHSA, AKTHBAHOHHBIN (DAKTOP, H3MCIIFUCHHS.

— 49 ——



