V.P. Malyshev, Y.S. Zubrina, A.M Makasheva

Zh. Abishev Chemical and Metallurgical Institute, Karaganda, Kazakhstan
eia_hmi@mail.ru

INTERCONNECTION OF HEAT AND MECHANICAL ENERGY
IN THE DESTRUCTION OF MATERIALS

Abstract. The destruction of solid materials is possible only due to heat exposure at the melting temperature. However, at low temperatures, the destruction may be achieved by mechanical energy impact which is supplemented to the thermal energy of the mill charge. The latter is described by the Boltzmann distribution, which may be applied to a solid state. In the framework of this distribution we can determine the probability of overcoming any energy barrier, taking into account thermal energy of the chaotic motion of particles.

On this basis, a formula to calculate the probability of destruction of matter by the summing action of thermal and mechanical energy was obtained. This ensures the relative decrease in the E_a activation barrier.

Key words: thermal energy, mechanical energy, interconnection, destruction, Boltzmann distribution, probability theory, activation factor, grinding.

УДК 622.8

В.П. Мальшев, Ю.С. Зубрина, А.М. Макашева

Химико-металлургический институт имени Ж. Абишева, Караганда, Казахстан

ВЗАИМОСВЯЗЬ ТЕПЛОВОЙ И МЕХАНИЧЕСКОЙ ЭНЕРГИИ ПРИ РАЗРУШЕНИИ МАТЕРИАЛОВ

Аннотация. Разрушение твердых материалов возможно за счёт только теплового воздействия при температурах плавления. Но при низких температурах разрушение может быть достигнуто с помощью энергии механического воздействия, которое дополняется к тепловой энергии измельчаемого материала. Последняя описывается распределением Больцмана, которое вполне можно применить к твердому состоянию. В рамках этого распределения можно определить вероятность преодоления любого энергетического барьера, учитывая тепловую энергию хаотического движения частиц.

На этой основе выведена формула для расчета вероятности разрушения вещества по суммарному воздействию тепловой и механической энергии. Тем самым обеспечивается относительное понижение барьера активации E_a.

Ключевые слова: тепловая энергия, механическая энергия, взаимосвязь, разрушение, распределение Больцмана, вероятностная теория, активационный фактор, измельчение.

Введение

Как известно, разрушение твердых материалов возможно без механического взаимодействия за счёт только тепловой энергии при температуре плавления. Очевидно, при более низких температурах этот же эффект может быть достигнут за счет дополнения имеющейся тепловой энергии материя энергией механического воздействия. Это можно обосновать с помощью распределения (энергетического спектра) Больцмана по кинетической энергии хаотического движения частиц, вполне применимого и к твердому состоянию, как это показано в книге Леонтовича М.А. [1].
Равновесное распределение частиц по кинетической энергии хаотического (теплового) движения в зависимости от температуры было установлено Л. Больцманом в следующей форме [2]

$$P_i = N_i / N = \exp(-\varepsilon_i / kT) / \sum_{i=1}^{m} \exp(-\varepsilon_i / kT)$$

где P_i и N_i - соответственно доля и число частиц с энергией ε_i; N - общее число частиц; k - константа Больцмана (названная так М. Планком [2]); m - число учитываемых энергетических уровней. Величину P_i можно трактовать и как вероятность обнаружения частиц с энергией ε_i.

Одним из свойств этого распределения является запрет на большую заселенность последующего уровня энергии в сравнении с предыдущим по условию $P_{i+1} \leq P_i$. Другое свойство состоит в повышении равномерности заселения уровней с увеличением температуры. Так, при 0 K заселенными оказывается только первый уровень, а при $T \rightarrow \infty$ достигается полная равномерность заселения всех уровней с $P_i = 1/m$ и $m = N$ [3-5]. Графически это распределение для двух произвольных температур выглядит следующим образом (рис. 1).

Как и предписывается этим распределением, оно имеет невозврастающий характер, т.е. соблюдается условие $P_{i+1} \leq P_i$. С повышением температуры распределение становится все более равномерным (при $T \rightarrow \infty$ распределение становится горизонтальным и практически совпадает с осью абсцисс). Во всех случаях соблюдается условие

$$\sum_{i=1}^{m \leq N} P_i = 1.$$

(2)

Рисунок 1 - Распределение (энергетический спектр) Больцмана

В свою очередь ограничение $m \leq N$ диктует тем, что число учитываемых уровней энергии не может быть больше числа обладателей этого признака их различимости, т.е. самого числа частиц [5].

Для определения доли частиц, имеющих энергию, равную или большую, чем энергия некоторого барьера ε_b, необходимо просуммировать распределение вероятностей P_i выше барьера ε_b:

194
\[P_a = \sum_{a}^{m} \exp(-\varepsilon_i / kT) / \sum_{1}^{m} \exp(-\varepsilon_i / kT). \]

(3)

gде \(a \) – номер уровня энергии, соответствующего энергии активации. Чтобы обеспечить определенность номера \(a \), ему следует задавать некоторое целочисленное значение, исходя из соотношения

\[\Delta \varepsilon = \varepsilon_i / a, \]

(4)

gде \(\Delta \varepsilon \) – постоянный энергетический интервал – шаг варьирования \(\varepsilon_i \).

Для более точного выражения \(P_a \) необходимо от дискретного распределения энергии перейти к непрерывному, то есть перейти от суммирования к интегрированию. С этой целью вначале числитель и знаменатель дроби (3) умножаются на \(\Delta \varepsilon \) и этот множитель вводится под знак суммы:

\[P_a = \sum_{a}^{m} \Delta \varepsilon \exp(-\varepsilon_i / kT) / \sum_{1}^{m} \Delta \varepsilon \exp(-\varepsilon_i / kT). \]

(5)

При \(m \to \infty \) и \(\Delta \varepsilon \to d\varepsilon \) обеспечивается переход к интегральной форме

\[P_a = \int_{\varepsilon_a}^{\infty} \exp(-\varepsilon / kT)d\varepsilon / \int_{0}^{\infty} \exp(-\varepsilon / kT)d\varepsilon. \]

(6)

Данное выражение раскрывает геометрический смысл функции \(P_a \) (см. рис. 1): она равна отношению площади под кривой \(P = f(\varepsilon) \) (эта площадь и есть интеграл данной функции) справа от \(\varepsilon_i \) к площади под всей кривой. Из рис. 1 очевидно, что с повышением температуры площадь под кривой справа от \(\varepsilon_i \) увеличивается, а слева – уменьшается, поэтому доля сверхбарьерных частиц должна повышаться.

Математически данный результат получается после взятия интегралов. Так, первообразная функция для неопределенного интеграла \(\int \exp(-\varepsilon_f(kT))d\varepsilon \) имеет вид

\[F = -kT \exp[-\varepsilon_f(kT)] + \text{const}. \]

(7)

При взятии несобственных интегралов в (6) константа интегрирования сокращается, поэтому для интеграла в числитель имеем

\[\int_{\varepsilon_a}^{\infty} \exp(-\varepsilon_f(kT))d\varepsilon = -kT \exp[-\varepsilon_f(kT)]\bigg|_{\varepsilon_a}^{\infty} = kT \exp[-\varepsilon_a/(kT)]. \]

(8)

Интеграл в знаменателе равен

\[\int_{0}^{\infty} \exp(-\varepsilon_f(kT))d\varepsilon = -kT \exp[-\varepsilon_f(kT)]\bigg|_{0}^{\infty} = kT. \]

(9)

В целом получается искомое выражение

\[P_a = \exp[-\varepsilon_a/(kT)]. \]

(10)

из которого непосредственно следует необходимость увеличения доли надбарьерных частиц при повышении температуры.

Данное выражение использовалось в качестве составной части константы скорости еще в приближении уравнения Аррениуса, а затем и в более строгих выражениях формальной кинетики [6]. Не менее важным является интеграл (9), поскольку он имеет смысл среднеснегативной тепловой энергии частицы при температуре \(T \), с которой непосредственно сопоставляется энергия
барьерра ε, в формуле (10). В пересчете на моль эта формула примет вид

$$P_a = \exp\left[-\frac{E_a}{(RT)}\right],$$

в которой RT приобретает смысл среднинтегральной тепловой энергии моля вещества при температуре T.

Вообще говоря, согласно теореме о среднем значении функции ее истинная, математически строгая величина может быть определена именно как среднинтегральная [7]. Поэтому в дальнейшем будем называть величину RT просто средней тепловой энергией.

Детальное рассмотрение энергетического поведения отдельных частиц в рамках распределения Больцмана можно понимать как микроскопический подход, а с учетом оперирования средней тепловой энергией – как макроскопический. В этом соединении двух крайностей, по-видимому, и заключена непреходящая ценность подобного отображения сложных систем и возможность решения многих конкретных проблем [8], к числу которых относится и проблема адекватного отображения воздействия механической энергии на разрушение материалов.

Трактовка разрушаемости материалов под суммарным воздействием тепловой и механической энергии

Основная причина неудач при попытках решения данной проблемы, рассмотренных в работе [9], на наш взгляд, состоит в слишком непосредственноном сопоставлении механической энергии E_{mec} с энергией связи частиц E_b, которое заключается в вычитании первой из второй, как это можно выразить для различных вариантов активации разрушения

$$P_a = \exp\left(-\frac{E_b - E_{mec}}{RT}\right).$$

Здесь при возрастании механической энергии вероятность разрушения структуры закономерно увеличивается, но при $E_{mec} > E_b$, которое в реальных условиях разрушения может быть нормой, получаются абсурдные значения $P_a > 1$. К тому же при таком выражении активационного фактора, имеющего смысл вероятности разрушения, тепловая и механическая энергия противопоставляются друг другу.

Обсуждаемый способ выражения энергии активации занимствован, по-видимому, из молекулярной кинетики, в которой на самом деле преследуется цель понижения энергии активации за счет использования катализаторов.

Между тем при воздействии механической энергии на вещество чисто физически она прибавляется к тепловой энергии системы, а не вычитается из энергии связи частиц, что может быть следствием уже совместного воздействия тепловой и механической энергии на вещество.

В условиях неравновесности подвода механической энергии это возмущение можно представить как сдвиг всего распределения энергии на одинаковую для всех частиц величину механической энергии благодаря упругим свойствам кристалла (рис. 2).
E_i - энергия частиц; E_b - энергия барьера, равная энергии активации разрушения E_a.
E_{mec} - механическая энергия; P_a - доля частиц с энергией E_i, до удара (1)
и с энергией $E_i + E_{mec}$ в момент механического воздействия (2).

Рисунок 2 - Сдвиг энергии частиц по распределению Болцмана при механическом воздействии (в расчете на моль вещества). Стрелками показано мгновенное повышение энергии произвольной частицы.

Нельзя исключить и частичную релаксацию системы, сопровождающую повышением температуры. При этом вероятность преодоления некоторого энергетического барьера E_b, т.е. вероятность разрушения, будет увеличиваться не за счет абсолютного, а за счет относительного понижения барьера благодаря увеличению суммарной энергии для всех частиц, из-за чего часть подбарьерных частиц становится сверхбарьерной (на рисунке это перемещение показано стрелками).

Таким образом, по физическим основаниям вероятность разрушения следует выразить как результат противодействия суммы тепловой и механической энергии активационному барьеру разрушения вещества:

$$P_a = \exp\left(-\frac{E_a}{RT + E_{mec}}\right).$$

Здесь, в отличие от (12), появление абсурдных результатов исключено при любом RT и E_{mec} и гарантируется соблюдение условия $0 \leq P_a \leq 1$, а при $E_{mec} >> RT$ роль тепловой энергии становится ничтожной.

Поскольку размерность RT, как E_a, выражается удельной мольной величиной (Дж/моль), к ней же необходимо привести и размерность механической энергии. Для этого достаточно учесть число молей в разрушаемом веществе и отнести величину механической энергии к этому числу:

$$P_a = \exp\left(-\frac{E_a}{RT + \frac{E_{mec}M}{m}}\right),$$

где m – масса разрушаемого вещества, кг; M – его моллярная масса, кг/моль; E – прилагаемая механическая энергия, Дж.

В принципе, все выкладки справедливы для любого вида воздействующей энергии – звуковой, лучистой (в частности, лазерной), но наиболее распространенной оказывается энергия удара. Покажем это на примере применения формулы (14) в новой теории измельчения руд, наиболее
адекватно отображающей вероятностную природу этого процесса [10-16].

Роль активационного фактора в вероятностной теории измельчения

В этой теории скорость измельчения рассматривается как произведение вероятностей последовательных событий совместного присутствия мельющего и измельчающих тел в объеме их хаотизированной смеси (концентрационный фактор, $P_{конс}$), их пространственной совместимости – контакта (стерический фактор, P_{c}), непосредственного удара мельющего тела в измельчаемый материал (активационный фактор, P_{a}) при периодической возобновляемости этих событий (частотный фактор, Z, c1):

$$V=ZP_{конс}P_{c}P_{a}. \quad (15)$$

При этом все факторы раскрываются через паспортные характеристики мельницы, физические константы и режимные параметры процесса измельчения, а также через энергию удара шара в зерно. Так, раскрытие активационного фактора (14) приводит к формуле

$$P_{a} = \exp \left[- \frac{E_{a}}{RT + MgD \left(\gamma_{м} / \gamma_{2} \right) \left(d_{uu} / d_{j} \right)^{3}} \right], \quad (16)$$

где E_{a} - энергия активации, принятая для модельных расчетов равной теплоте плавления кварца (основного породообразующего минерала руды) 9170 Дж/моль; R - универсальная газовая постоянная, равная 8,31441 Дж/(моль·К); T - абсолютная температура, приравненная к комнатной, 298 К; M - молекулярная масса кварца, 0,0601 кг/моль; g - ускорение силы тяжести, 9,807 м/c²; D - внутренний диаметр мельницы, для модельных расчетов взятый из характеристики промышленной мельницы равным 3,36 м; $\gamma_{м}$ и γ_{2} - плотность материала шаров и руды, соответственно 7874 и 2650 кг/м³; d_{uu} - диаметр шара, равный в среднем 0,06 м; d_{j} - размер зерен j-ой фракции.

Энергия удара учитена через приравненную её потенциальную энергию шара, массой m_{w}, при падении с высоты $h = D$ [14] по формуле

$$E_{wес} = m_{w}gh. \quad (17)$$

Из формулы (16) следует, что с уменьшением размера зерен и увеличением диаметра шаров разрушаемость зерен резко увеличивается. Однако этому противодействует стерический (экранирующий фактор), который по геометрическим соотношениям размеров шара и зерна получает выражение

$$P_{ст} = 4 \left[\frac{d_{j}}{d_{uu}} - \left(\frac{d_{j}}{d_{uu}} \right)^{2} \right]. \quad (18)$$

Здесь, напротив, при таком же изменении размеров зерен и шаров величина данного фактора уменьшается. Их совместное воздействие иллюстрируется рисунком 3.

Полученные данные свидетельствуют о доминировании стерического фактора в общем ничтожном разрушении для всех мелких классов, от 10^{-6} до 10^{-4} при всей разрушительной мощи прямого удара шара в зерно. Лишь с 10^{-3} м начинается заметный рост разрушаемости за счет ослабления стерического фактора, но на фоне ослабления и активационного, что приводит к формированию максимума разрушаемости на уровне 13,3% для размера зерна 3 мм. Вне этой зоны энергия падения шара тратится буквально впустую либо из-за непопадания в мелкие зерна из «мертвого» (экранированного) пространства, либо ввиду недостаточной мощи удара для разрушения более крупных зерен.
При этом впервые в рамках вероятностной теории измельчения дается объяснение крайне низкому энергетическому КПД процесса, который тем не менее требует не менее 90% всех затрат по горно-металлургическому циклу. Полученный результат можно рассматривать как еще одно свидетельство непреходящей ценности статистического распределения (энергетического спектра) Больцмана, сохраняющего до сих привлекательность для самых различных областей науки и практики [10].

Заключение
Распределение Больцмана позволяет определить вероятность преодоления любого энергетического барьера за счет тепловой энергии хаотического движения частиц. Это воздействие может быть дополнено учетом приложенной механической энергии путем суммирования ее с тепловой. При этом полученная формула представляет собой вероятность разрушения вещества при суммарном воздействии тепловой (RT) и механической (E_{mec}) энергии

$$P_a = \exp \left(- \frac{E_a}{RT + E_{mec}} \right)$$

и обеспечивает относительное понижение барьера активации E_a. Данный активационный фактор использован в вероятностной теории измельчения материалов, и с его помощью раскрыта причина низкого энергетического КПД этого высокозатратного процесса.

Литература
REFERENCES

[10] Malyshev V.P. Obogashchenie rud, 1995, 4-5, 4-14. (in Russ.).

В.П. Малышев, Ю.С. Зубрина, А.М. Макашева

Ж. Обиев атындағы Химия-металлургия институты, Қарасты К., Қазақстан Республикасы

МАТЕРИАЛДАРЫН БУЛЫНУ КЕЗІНДЕГІ МЕХАНИКАЛЫҚ ЖОНЕ ЖЕЛУЛЫҚ ЕНЕРГИЯНЫҢ ЕЗАРА БАЙЛАНЫСЫ

Түйін сөздер: желулық энергия, механикалық энергия, өзара байланыс, бұлұң, Болдымның таратауы, қытпілдайқ теория, актівділік фактор, ұсау.

Аннотация. Сұрып температурасындағы жалу жеңіл өсімдік қатты материалдары бұлұңды мүмкін. Алғашқа атаған температураларда бұлұң механикалық өзара байланыс энергиясының қомегімен ететін мүмкін, және де ол сақталған материалдың желулық энергиясына тәлдік болады. Қатты құйыңдақ шығарынды болып Болдымның қытпілдайым таратауы ең соғыс бөліс жазылды. Осы бұлұң қазақ атағында болып табылған ретінде колданысады және желулық энергиясы сақырылып, қез келген энергетикалық көздерінің әдетінен ықтымалдығын шығауға болады.

Осы өзге тәріздестірілген бұлұң қытпілділігін есептей үшін формуланы пайдаланған, ол желулық және механикалық энергияның желуы жеңіл ұсынылған, қызмет ететін, қызмет етеді. Уақыт оқытылуы мәндегі оңдайым қазақ.