REPORTS OF THE NATIONAL ACADEMY OF SCIENCES
OF THE REPUBLIC OF KAZAKHSTAN
ISSN 2224-5227
Volume 2, Number 306 (2016), 59 – 70

UDC 004.032.26

NEURONAL NETWORKS AND NEUROMORPHIC CALCULATIONS

Akhmetov B.S.1, Gorbachenko V.I.2.

1 Kazakh National Research Technical University named after K.I. Satpayev,
2 Penza state university, gorvi@mail.ru
bakhytzhan.akhmetov.54@mail.ru

Key words: neuromorphic calculations, neuronal networks, artificial neuron, memristor.
Abstract: In details, there is an understanding of bioinspired (natural) calculations, in modern stages of neural networks, there are given three generations of neural networks, highlighted the role of network of deep architecture and adhesional (impulsed) neuronal networks. It is presented that increasing of interest on bioinspired calculations, exactly to neuromorphic calculations and neuromorphic systems that realize models of biological neurons, it is explained by developing of artificial intellect, studying the work of the brain in artificial intellect and searching new paradigms of calculations. There is shown analysis of five degrees of modeling and imitations structure of biological nerves of the brain and building of neuromorphic processes. The main attention is given for neuromorphic processor TrueNorth. There are descriptions of the model of adhesional neuron, that realized in the processor, principles of studying networks that built on such neurons and structure of processor. There is shown the structure of programming the system Corelet in TrueNorth that was based on a new paradigm of programming. It is described principles of working of new element which called electronical scheme — memristor. There are shown perspectives of using memristors for realization synapses of artificial neurons.

UDC 004.032.26

НЕЙРОННЫЕ СЕТИ И НЕЙРОМОРФНЫЕ ВЫЧИСЛЕНИЯ

Ахметов Б.С.1, Горбаченко В.И.2.

1 Казахский национальный исследовательский технический университет имени К.И.Сатпаева,
bakhytzhan.akhmetov.54@mail.ru
2 Пензенский государственный университет, gorvi@mail.ru

Ключевые слова: нейроморфные вычисления, нейронные сети, искусственный нейрон, мемристор.
Аннотация. В обзоре дается понятие биоинспирированных (природных) вычислений, показана роль нейронных сетей как важнейшего инструмента биоинспирированных вычислений. Дана характеристика трех поколений нейронных сетей, подчеркнута роль сетей глубокой архитектуры и спайковых (импульсных) нейронных сетей на современном этапе развития нейронных сетей. Показано, что повышение интереса к биоинспирированным вычислениям, особенно к нейроморфным вычислениям и нейроморфным системам, реализующим модели биологических нейронов, объясняется развитием искусственного интеллекта, исследованиями работы головного мозга, попытками использования принципов работы мозга в искусственном интеллекте и поисками новых парадигм вычислений. Приведен анализ пяти уровней моделирования и имитации нервной структуры биологического мозга, приведены характерные примеры моделирования работы мозга и построения нейроморфных процессоров. Основное внимание уделено нейроморфному процессору TrueNorth. Описаны модель спайкового нейрона, реализованная в процессоре,
принципы обучения сетей, построенных на таких нейронах, и структура процессора. Представлена структура системы программирования Corelel процессора TrueNorth, основанной на новой парадигме программирования. Описан принцип работы нового элемента электронных схем – мемристора. Показана перспективность применения мемристоров для реализации синапсов искусственных нейронов.

Введение. Биоинс皮рированные вычисления

В настоящее время интенсивно развиваются биоинспирированные (Natural Computing — природные) вычисления [1—6]. Природные вычисления охватывают широкий спектр направлений — от нейронакука (Neuroscience) [7], изучающей работу живого мозга, до вычислительного интеллекта (Computational intelligence — CI). Эти понятия в 1994 г. ввел Дж. Бедек (Bekdek J.C.) [8]. Вычислительный интеллект использует такие технологии, как нейронные сети, нечеткая логика и нечеткие нейронные сети, эволюционное моделирование, роевой интеллект и другие [9−17].

Термин "вычислительный интеллект" близок по своему значению к широко используемому в зарубежной литературе термину "soft computing" (мягкие вычисления), предложенному Л. Заде (Zadeh L.A.) [18]. Мягкие вычисления представляют собой совокупность неточных, приближенных методов, основанных на обучении, нечеткой логике, генетических вычислениях, нейрокомпьютерных и вероятностных вычислениях. Основной принцип мягких вычислений — учет неточности, неопределенности для достижения большего соответствия с реальностью.

Важнейшим инструментом биоинспирированных вычислений являются искусственные нейронные сети — математические модели, основанные на идеях построения нейронов головного мозга [13—14, 19—27]. В развитии нейронных сетей можно выделить три поколения [27—28]. Нейронные сети первого поколения (с 1943 г. до середины восьмидесятих годов двадцатого века) использовали пороговый нейрон Маккалоха-Питса, имели бинарные входы и выходы и были, как правило, однослоевыми. Типичным представителем сетей второго поколения (середина восьмидесятих до 2006 г.) является многослойный перспектрон (правильнее называть "многослойная сеть прямого распространения") с сигмоидальными функциями активации и небольшим числом слоев. Обучение таких сетей использует градиентные алгоритмы на основе метода обратного распространения ошибки. Такие сети могут аппроксимировать любую функцию.

К сетям второго поколения относятся также сети с другой архитектурой: сети и карты Кохонена, сети Хопфилда, радиальные базисные сети и многие другие. Сети второго поколения находят широкое применение в самых различных областях. Сети третьего поколения — это сети глубокого обучения (Deep Learning) [29] и спаивовые (импульсные) сети [30]. Сети глубокого обучения, началом развития которых считается публикация в 2006 г. статьи [31], содержат большое количество слоев и используют специальные методы обучения, так как при большом числе слоев методы обучения сетей второго поколения плохо работают. Сети глубокого обучения являются мощным инструментом распознавания образов. Спаивовые сети, работа которых достаточно точно воспроизводит работу нейронов мозга, известны довольно давно, но только в настоящее время они стали достаточно широко использоваться для решения прикладных задач.

Появление интереса к биоинспирированным вычислениям объясняется развитием искусственного интеллекта, исследованием работы головного мозга, попытками использования принципов работы мозга в искусственном интеллекте и поисками новых парадигм вычислений. В искусственном интеллекте существует два альтернативных подхода к тому, как этот искусственный интеллект создавать. Один подход идет от психологии и нашего представления о том, как человек рассуждает и думает. Это направление связано с логическим выводом. Второй подход идет снизу. Так как понятно, что наш интеллект основан на взаимодействии и совместной работе многих миллионов клеток в головном мозге, то можно попытаться смоделировать эти нервные клетки и построить из них искусственные нейронные сети, которые будут выполнять интеллектуальные задачи. Причем существует достаточно аргументированная точка зрения [32], что построить полноценный искусственный интеллект можно только воспроизводя работу головного мозга. В исследованиях работы мозга сформировалась и интенсивно развивается вычислительная нейронаука (Computational Neuroscience) [33], изучающая функции мозга с точки зрения обработки информации структурами нервной системы. Вычислительная нейронаука исследует модели нейронов и нервных систем с учётом их физиологии и динамики. В области
решения вычислительных задач назрела необходимость разработки новых парадигм вычислений. Механическое увеличение числа процессоров суперкомпьютеров приводит к недопустимому росту энергопотребления и низкой надежности. Характерно, что по данным рейтинга TOP500 самых мощных суперкомпьютеров (www.top500.org) производительность самого мощного суперкомпьютера не растет последние 3 года и остается на уровне 33.9 PFlop/S (PFlop/S — 10^{15} операций с плавающей точкой в секунду). В современных вычислительных системах разделены процессы обработки и запоминания информации. В головном мозге и искусственных нейронных сетях такого разделения нет. Переход на новые парадигмы вычислений без разделения процессов обработки и хранения информации может дать качественный эффект в решении вычислительных задач [34]. В частности, начал развиваться идея совмещения процессов обработки и хранения информации (Memcomputing Machines) [35]. Нейронные сети являются частным случаем Memcomputing Machines.

Основные направления нейроморфных вычислений

Перечисленные обстоятельства объясняют повышенный интерес к нейроморфным вычислениям и нейроморфным системам, реализующим модели биологических нейронов [36]. Рассмотрим некоторые современные направления нейроморфных вычислений. Попытки моделирования и имитации нервной структуры биологического мозга, как с помощью платформы традиционных вычислений, так и с помощью интегральных схем, реализованных в некоторой (аналоговой, цифровой, или смешанной аналогово-цифровой) форме с аппаратными и/или программными интерфейсами можно разбить на несколько уровней [37].

1. Теоретический уровень — моделирование на высшем уровне абстракции. Примером является проект "Bayesian Cognitive Models", основанный на байесовском моделировании когнитивной деятельности [38]. В этом подходе воспроизводятся только внешние проявления когнитивной деятельности, но не структура и функционирование мозга.

2. Обобщенно-алгоритмический уровень. Пример — Hierarchical Temporal Memory [32, 39]. Временная Иерархическая Память (Hierarchical Temporal Memory, HTM) — это технология, имитирующая структурные и алгоритмические свойства неокортика. Неокортик (лат. neocortex) — новые области коры головного мозга, которые у низших млекопитающих только намечены, а у человека составляют основную часть коры. Неокорtek располагается в верхнем слое полушарий мозга, имеет толщину 2–4 миллиметра и отвечает за высшие нервные функции — сенсорное восприятие, выполнение моторных команд, осознанное мышление и речь. Временная Иерархическая Память моделирует две особенности человеческого мозга, отличаясь от современных систем распознавания образов. Первой особенностью является способность мозга учитывать роль временной составляющей в процессе зрения. Это выражается в способности относить близкие по времени видимые объекты к одной и той же категории изображений. Вторым отличием является неравномерность. Мозг иерархичен по своей структуре. Нейроны, составляющие неокортекс, находятся в иерархической связи друг с другом и образуют несколько уровней иерархии. Чем выше уровень иерархии, тем с более абстрактной информацией он работает. Следовательно, в системе распознавания образов сложные объекты должны быть иерархически связаны с более простыми их составляющими. HTM организованы как древовидная иерархия узлов, где каждый узел реализует общие функции обучения и памяти. HTM хранит информацию в иерархии, моделируя мир.

3. Уровень конкретного применения. Например, интерфейс "мозг-компьютер" (brain-computer interface), нейропроцессоризация. Интерфейс "мозг-компьютер" [40] — система для обмена информацией между мозгом и компьютером. Исследование и моделирование мозга необходимо здесь для восприятия (прежде всего, ненавязчивого) и распознавания сигналов мозга.

создания так называемого "когнитивного компьютера" – "мыслящего" как мозг человека, способного обучаться в процессе познания окружающего мира, деляющего самостоятельные выводы и принимающего самостоятельные решения на основе этих "умозаключений". Фирма IBM также реализует собственный проект C2S2 (Cognitive Computing via Synaptronics and Supercomputing – Когнитивные вычисления с помощью синаптронику и суперкомпьютеров) [43]. В рамках этого проекта на первых этапах будут созданы нейроподобные чипы. В перспективе миссия C2S2 заключается в создании компактных когнитивных компьютеров с минимальным энерго потреблением, приближающихся по интеллекту к мозгу млекопитающего. Наиболее совершенный на сегодня нейронный процессор TrueNorth [44], реализующий спайковую нейронную сеть, создан фирмой IBM в рамках проекта SyNAPSE в 2014 г. и будет подробнее рассмотрен ниже.

Другим известным примером является проект Neurogrid лаборатории "Кремниевый мозг" ("Brains in Silicon") Стенфордского университета [45]. В рамках проекта разработан аналого-цифровой чип [46], содержащий 65536 нейронов. Плата, содержащая 16 чипов, эмулирует 1 миллион нейронов. Нейроморфный чип создан в проекте BrainScaleS [47], реализуемом в рамках программы Евросоюза по созданию нейроморфных систем.

Фирма Qualcomm, специализирующаяся в разработке процессоров для мобильных систем, представила однокристальный нейронный процессор Qualcomm Zeroth [48]. Фирма ставит целью построить процессор, способный к самообучению, способный видеть и воспринимать мир, как люди. Создание такого процессора – это первый шаг по внедрению нейросетевых технологий в мобильные устройства.

В Китае специалистами университетов Чжэцзяна и Ханчжоу создан нейроморфный чип "Darwin", основанный на спайковой нейронной сети [49]. Чип содержит 2048 спайковых нейронов, более 4 миллионов синапсов и более 15 видов различных линий задержек. Конфигурация и топология сети полностью программируемая, а каждый нейрон и синапс обладает своим собственным набором параметров, которые определяют его функционирование.

В России также ведутся исследования в области нейроморфных систем. Так в Национальном исследовательском центре "Курчатовский институт" развивается научное направление, основанное на конвергенции нано-, био-, инфо-, когнитивных и социогуманитарных (НБИКС) наук и технологий [50].

5. Молекулярно-клеточный (биофизический) уровень. Один из первых проектов в данной области – это Blue Brain Project [51], начатый компанией IBM летом 2005 года совместно со Швейцарским федеральным технологическим институтом в Лозанне. Целью проекта является детальное моделирование отдельных нейронов и образуемых ими типовых колонок неокортекса мозга – неокортекса мозга. В коре нейроны организованы в элементарные единицы – неокортекальные колонки, имеющие порядка 0,5 мкм в диаметре и 2 мкм высотой. Каждая такая колонка содержит около 10 тыс. нейронов со сложной, но упорядоченной структурой связи между собой и с внешними по отношению к колонке нейрогруппами. Модель колонки неокортекса строится на клеточном уровне исключительно по биологическим данным. В модели нейрона в рамках данного проекта учитываются различия между типами нейронов, пространственная геометрия нейронов, распределение ионных каналов по поверхности мембраны клетки и другие параметры нейронов-прототипов. Осенью 2015 г. исследователи из Федеральной политехнической школы Лозанны опубликовали работу [52], описывающую цифровую реконструкцию участка мозга крысы, содержащую 31000 нейронов, 55 слоев клеток и 207 различных подтипов нейронов.

Проект Евросоюза Human Brain (Мозг человека) [53] должен развить уже успешно действующий проект Blue Brain Project до уровня имитации мозга человека. Основная цель проекта – создать единую открытую платформу для экспериментов с имитацией функций человеческого мозга. С ее помощью можно будет разрабатывать и новые компьютерные модели имитации мозга на молекулярном и клеточном уровне, что даст возможность моделировать и понять биологические и медицинские процессы и тестировать новые методы лечения болезней мозга.

Нейроморфные процесоры
Рассмотрим подробнее нейронный процессор TrueNorth [44], созданный фирмой IBM в
рамках проекта SyNAPSE. Чип TrueNorth содержит 5,4 миллиарда транзисторов, что позволяет реализовать один миллион нейронов и 256 миллионов связей между нейронами – синапсами. Для организации такого количества элементов реализовано 4096 ядер в двухмерном массиве размером 64 на 64. Каждое ядро моделирует 256 нейронов. Нейронная сеть процессора представляет собой импульсную спайковую сеть [30, 54], в которой нейроны обмениваются короткими импульсами – спайками. В спайковых сетях сигнал представлен не вещественным числом, а набором импульсов (спайков) одинаковой амплитуды и длительности, а информация содержится не в амплитуде, а в интервалах между импульсами. В процессоре реализована модель биологического нейрона "интегрировать и срабатывать" (LIF – Leaky integrate-and-fire) с утечками, моделирующими утечку мембранного потенциала [54].

Упрощенное описание реализованной модели имеет следующий вид (фактически реализована более сложная модель) [55]. Для нейрона \(j \) и временного шага \(t \) мембранный потенциал \(V_j(t) \) является результатом синаптического интегрирования и представляет собой сумму мембранного потенциала в предыдущем временном шаге \(V_j(t-1) \) и синаптического входа. Для каждого из \(N \) синапсов, синаптической вход равен сумме входных спайков синапса \(x_i(t) \) в текущем временном шаге, умноженных на синаптический вес \(s_i \):

\[
V_j(t) = V_j(t-1) + \sum_{i=1}^{N} x_i(t)s_i.
\]

После интегрирования в модели LIF вычисляется значение утечки \(\lambda_j \) от мембранного потенциала. При линейной утечке, эта константа вычисляется каждый временной шаг, независимо от мембранного потенциала или синаптической активности. Эта операция реализует смещение в динамике нейронной активности

\[
V_j(t) = V_j(t) - \lambda_j.
\]

Затем модель LIF сравнивает мембранный потенциал на текущем временном шаге \(V_j(t) \) с порогом \(\alpha_j \). Если \(V_j(t) \geq \alpha_j \), то нейрон "выстреливает" спайк и сбрасывает свой мембранный потенциал \(V_j(t) = R_j \). В типичном случае напряжение сброса \(R_j \) равно нулю. В реализованной модели нейрон используется дополнительно статистические синаптические входы, утечки и пороги, что обеспечивает широкие возможности моделирования динамики нейрона [55].

Модель нейрона реализована в цифровом виде и использует только простые операции, избегая сложных функциональных блоков, таких как умножение, деление, возведение в степень. Нейроны реализованы с использованием только арифметики с фиксированной запятой. Синаптические веса выражаются как 9-ти битные целые числа. Каждый нейрон может посылать сигнал к любому другому нейрону. Структура этого процессора очень подвижна: каждый нейрон имеет индивидуальную конфигурацию, каждый синапс может быть активирован или дезактивирован вне зависимости от остальных, случайные сбои и дефекты той или иной части ядра не повлияют на работу остальной системы.

Процессор построен в виде сети нейросинаптических ядер. Синаптические соединения внутри ядра реализуются матричным переключателем – кроссбаром. Межядерные соединения реализуются сетью передачи данных. Имеются также буфера, задерживающие входящие спайки.

В процессоре используется обучение без учителя спайковых сетей на основе правила Хебба [54, 56]. В отличие от сетей, построенных из активационных нейронов, хэббовское обучение спайковых сетей асимметрично во времени. А именно, в импульсных сетях более полно учитывается соотношение между временем появления импульса на синаптическом входе нейрона и временем генерации его собственного импульса. Максимальное приращение синаптического вея происходит в случае, когда выходной импульс генерируется немедленно после входного, а при увеличении запаздывания это приращение уменьшается. Если же, наоборот, момент генерации
выходного импульса предшествует появлению сигнала на синапсе, то вес этого синапса уменьшается, причем максимальное уменьшение соответствует минимальному времени предшествования. В нейрочипе фирмы IBM применяется аппаратная реализация зависящего от времени алгоритма обучения спайковых сетей [57], основанная на ступенчатой аппроксимации зависимости степени изменения синаптического веса от степени запаздывания выходного импульса по отношению к входному импульсу.

Но для спайковых сетей нет такого разнообразия методов обучения, как для сетей, построенных на классических активационных моделях нейронов. Известный специалист в области нейронных сетей Я. Лекун (Yann LeCun) отмечает, что спайковые сети при безусловной близости к биологическим нейронным сетям уступают классическим активационным искусственным нейронным сетям по времени решения задач распознавания образов [58].

Для процессора TrueNorth разработана новая парадигма программирования [59], так как последовательная парадигма программирования архитектуры фон Неймана является полностью непригодной для TrueNorth. В парадигме программирования TrueNorth большие сеть нейросинаптических ядер строится путем соединения наборов небольших сетей, каждая из небольших сетей, в свою очередь, может быть, построенных с помощью соединения наборов еще более мелких сетей, и так далее, пока мы не получаем единое, состоящее из одного нейросинаптического ядра, который является основным неделимым блоком.

Новая парадигма программирования состоит из следующих частей.
1. Corelet – абстракция, которая представляет собой программу TrueNorth, показывающую только внешние входы и выходы сети и инкапсулирующую все другие детали сети нейросинаптических ядер.
2. Объектно-ориентированный язык Corelet для создания, компоновки и декомпозиции корелетов. Основными символами языка являются якорь, нейросинаптическое ядро и Corelet. Конструкторы составляют грамматику для компоновки этих символов в программах TrueNorth. Вместе символы и грамматика являются необходимыми и достаточными для выражения любой программы TrueNorth. Эти примитивы реализованы в объектно-ориентированной методологии.
3. Библиотека Corelet, которая выступает в качестве постоянно растущего хранилища многоразовых корелетов, из которых можно создавать новые корелеты.
4. Лаборатория Corelet – это среда программирования, которая интегрируется с симулятором TrueNorth, который называется Компас, а также поддерживает все аспекты цикла программирования от проектирования до разработки, отладки и в развертывании.

Мемристоры и нейронные сети
В настоящее время большие надежды в области новых компьютерных архитектур и, в частности, нейрокомпьютерных архитектур, возлагаются на мемристоры. Еще в 1971 г. Леон Оиг Чуа (Leon Ong Chua), профессор кафедры электротехники и вычислительных систем Калифорнийского университета в Беркли (University of California, Berkeley), теоретически предложил новый двухэлектродный элемент, названный "мемристор" [60]. Но только в 2008 г. фирма Hewlett-Packard реализовала мемристор в виде микросхемы. Л. Чуа выдвинул и математически обосновал гипотезу о том, что наряду с индуктивностью, конденсатором и резистором должен быть четвертый базовый элемент электрических цепей. Л. Чуа исходил из того, что должны быть соотношения, связывающие все четыре основные переменные электрических цепей: ток \(i \), напряжение \(u \), заряд \(q \) и магнитный поток \(\Phi \). Всего таких соотношений может быть шесть. Пять из них хорошо известны:

\[
R(i) = \frac{du(i)}{di}, \quad C(q) = \frac{dq(u)}{du}, \quad L(\Phi) = \frac{d\Phi(i)}{di}, \quad i(t) = \frac{dq}{dt}, \quad u(t) = \frac{d\Phi}{dt},
\]

где \(u(t) \) и \(i(t) \) — переменные напряжение и ток, \(q(t) \) и \(\Phi(t) \) — заряд и магнитный поток, \(R(i) \), \(C(q) \) и \(L(\Phi) \) — сопротивление, емкость и индуктивность, зависящие, соответственно, от величины тока, заряда и магнитного потока.

Л. Чуа предположил, что должно существовать шестое соотношение, связывающее магнитный поток с зарядом.
\[M(q) = \frac{d\Phi(q)}{dq}, \]

откуда \[\frac{d\Phi(t)}{dt} = M(q) \frac{dq}{dt}, \] или \[u(t) = M(q) i(t). \] Так как \[q(t) = \int_{-\infty}^{t} i(\tau)d\tau, \] то недостающий элемент — мемристор описывается выражением

\[u(t) = M \left(\int_{-\infty}^{t} i(\tau)d\tau \right) i(t), \]

где \(M \) называется мемреживостью (общепринятого перевода нет, англ. memristonce).

Мемреживость зависит от тока. Мемристор является нелинейным элементом с памятью. Современные мемристоры реализуются средствами наноэлектроники [61–62]. Мемристор можно рассматривать как управляемый резистор. Причем он может работать и как цифровой элемент памяти, находящийся в одном из двух состояний (с малым или высоким сопротивлением), и как управляемый резистор. Установка требуемых значений проводимости мемристоров может быть реализована путем подачи на мемристор импульса постоянного напряжения заданной величины и заданной длительности [62]. Очень важно, что состояние мемристора сохраняется при отключении питания.

Поэтому мемристоры перспективны как перспективные в качестве запоминающих и логических элементов и управляемых резисторов. В частности, мемристоры как переменные резисторы очень перспективны в качестве синапсов нейронных сетей [62–66]. Разработаны различные схемы реализации синапсов с использованием мемристоров [62–68]. В частности, мостовая схема соединения мемристоров, предложенная в [67], обеспечивает реализацию положительных и отрицательных значений весовых коэффициентов нейронной сети. В [68] предложена реализация на мемристорах весов клеточных нейронных сетей — перспективных средств обработки изображений и решения дифференциальных уравнений в частных производных. Использование мемристоров в качестве синапсов спайковых нейронных сетей обеспечивает более близкое соответствие биологическому прототипу, чем существующие подходы [65, 69]. Известны различные схемы аппаратной реализации обучения спайковых нейронных сетей с синапсами, реализованными на мемристорах (см., например, [70]).

Таким образом, использование мемристоров в нейронных сетях является очень перспективным направлением, основанным на новой вычислительной парадigmе — совмещении процессов обработки и хранения информации (Memcomputing Machines) [35]. Нейронные сети на мемристорах реализуют аналоговую обработку информации. То есть налицо возврат к аналоговой схемотехнике, но на качественно новом уровне.

Заключение
Использование нейронных сетей, в том числе мемристорных, является перспективным направлением нейроморфных вычислений. Но для развития нейроморфных вычислений необходимо решить не только проблемы технологического характера, но и теоретические проблемы, связанные как с изучением механизмов работы нейронов головного мозга, так и с разработкой методов построения и обучения нейронных сетей.

ЛИТЕРАТУРА

[58] LeCun Y. Comment on the IBM TrueNorth neural net chip. [Электронный ресурс]. URL: https://plus.google.com/app/basic/stream/131j1vahwy2ilmeid02rrx51eybp11dp04/ (дата обращения: 15.01.2016).

REFERENCES

68
НЭЙРОНДЫ ЖЕЛІЛЕР ЖӘНЕ НЕЙРОМОРФТЫ ЕСЕПТЕУЛЕР

Ахметов Б.С.1, Горбаченко В.И.2

1Қ.И. Сәтбекев әлініңдегі Қазақ ұлттық техникалық зерттегі университеті, bakhytzhан.akhmetov.54@mail.ru
2Пенза мемлекеттік университеті, gorvi@mail.ru