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AHHOTauua. B cratbe fgaH 0630pHbIA aHanM3 MaTeMaTWYecKux Mojgeneid NS onucaHus Temnno- U
MaccomnepeHoca M arperauyoHHbIX MPOLIECCOB C MOMOLLbIO METOAAa PenakCauyOoHHbIX ffiep MepeHoca, KOTOpbIi
OTKPbIBAeT HOBble BO3MOXHOCTW [ANA [AETaIbHOrO0 U3y4yeHWs BAUSHWUA UWepapxXvu BpPeMeH penakcauuy Ha
MHTEHCMBHOCTb BbICOKOCKOPOCTHBIX Y HAHO-MaCLLITabHbIX TEXHOIOrMYEeCKUX NPOLLECCOB.
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Abstract. The paper deals with mathematical models describing heat and mass transfer and aggregation
processes with the help of relaxation transfer kernels approach, which opens up fresh opportunities for detailed study
of influence of relaxation times hierarchy on the intensity of high rate and nano-scale technological processes.

1. Introduction

Consideration of relaxation times and long-range interaction of structural components of a medium is
a great practical and theoretical problem [1-3] that is relevant in cases of high rate or nano-scale
technological processes. The operation cycle of these processes is short, and the entire process may go on
under the transient regime. In this connection, resources of effective controlling such processes are
limited, and it is important to calculate correctly and select the best values of governing parameters.

Problems of modeling both high rate and nano-scale processes are in touch with construction of
equations with retarded or divergent arguments that reflects the actual mechanism of transfer phenomena
in the medium modeled as a system of interacting oscillators with a set of partial frequencies and
interaction potentials [2, 3].

At the same time, though realization of that investigation program is very tempting, it’s unlikely to
promise near creation of the reliable engineering methodology for calculating heat and mass transfer
processes. The alternative approach to the problem is the methodology of relaxation transfer kernels,
which can be calculated from model evolution equations [3]. In a few articles before we elaborated upon
this approach to modeling heat and mass transfer in high rate processes [3-8].

In this article we summarize briefly our results in the area of description of time nonlocality applied
to heat and mass transfer and try to develop this approach for describing time nonlocality in aggregation
processes. We concentrate our attention upon a problem of equations structure, touching on the problem
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of analytical solutions of government equations in the lesser degree.

2. Mass and heat transfer equations

2.1. Main concept

Relaxation transfer kernels are the kernels of integral transformations that, in the statistical theory of
dissipation processes, relate fluxes with thermodynamic forces [1]. The general structure of these relations
for components fluxes in a multicomponent system according this methodology is like that [6]

J,(R,t)=J,(R,to)+ £ ffdtidRNk (R,R "t ti)Ft (R’1). 1)
k=1
Limiting one selfto the time nonlocality in the multicomponent system, one can write expressions
for the n linearly independent mass fluxes J, of components and the heat flux J has

J, = -ijdtiNk(R,t-0o v f~ ™~ 1-3} dtNIT(R,t- 1) VT~ , )
k10 vV T J 0 T
n A fv (t)i » T

JT=-X jdt2NTK(R't- t2)V k 2 ]- jdt2NTT(R t- 12)TAT, ?3)
k=0 \Y, b0 T

T

where v, is a chemical potential; R - space coordinates; T -temperature; t -time.
For a more compact description, let’s assumevml = -1. Then, in expressions (2), (3), one can

replace the subscript h by n +1 and write a unified form for the mass fluxes and heat flux in the

multicomponent system.
- v f&,‘o)&]
m].
T

J,= -Tjdt,Nik(RT-<DV ‘[Vk 4)
k=

Let’s also introduce notation for the integral terms

b = jart (Vi bR b A DTV (RQL (5)
Now, instead of equations (2), (3) we get
ntl
= - X 1ik

) et ©

For calculating the relaxation transfer kernels we can use various approximations which are based on
information about the physical mechanism of the processes [1, 2]. However, the analyses of various data
[1, 2] as well as our own experience [4-8] allow us to submit the heuristic unified model equation for
relaxation kernels

dN n
d =-Nt- +Z N T 1, @)
: 3

where, in order to be in agreement with the Onsager principle, it is assumed that Tik =T .

Of course, it’s impossible to warrant that form (7) is actually universal. But we shall consider
equation (7) as the base model for our further constructions.

The matrix of system (7) is symmetrical; therefore, all its eigenvalues are real. In this connection,
solution (7) can be represented as the sum ofthe forward and cross terms of the transfer kernels [6]:

N =1 Nk, (8)

where all items are real exponents and N ik = N~ .
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As it is shown in [6] with the help of the above model we can infer the following relations for
integrals (5):

q* vk _Jk
9)
dt

where for isotropic medium we suppose [3]

arie _ 0

dR (10)

So then, as a result of the repeated differentiation of (4) up to derivatives of the (n +1 )-th order, the

following relationships are obtained (where for any function— —= 27 ):
dt

n+l

1) - (11)
at” k=1 1) k=l 4k

Thus, for each ofthe components we obtain a system which consists of (n +1) equations connecting
the component flux with its derivatives up to (n +1) order inclusive.

The matrices ofthe obtained systems are not degenerate

detM . = det (12)
V Tk J

In this connection, from the (n +1) equations that are linear relative to integrals 1ik , one can

express all these integrals through the derivatives of fluxes Jr and then substitute the obtained
expressions into equation (6).

As a result, one can come to the linear differential equation of the (n +1)th order for the fluxes of
each ofthe components [6]

L v, ..vn =0, (13)
dtn dtn

where L isthe linear operator.
The succeeding deduction is based on the conservation laws:

dvi

~dt
Acting on expression (13) by the nabla operator and using equation (14), we can obtain the
differential equation ofthe (n + 2) th time-order for the potential of each ofthe components

(14)

fd m2(v,) dnd(v,))  dv, v 2 v2 71
L — — wl,..vn;V,k,V vn =0
dtn dtn dt

(15)

The nonlinear generalization of equation (4) can be represented in a nonlocal quadratic form with
tensor kernels [6, 8]
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J:=-Z /d<4N14R-*- 0 'V
(16)
£ £ U<*ANg>R,t-Lt-ty vV R ~Y V(R’™ »
k= P100 T
In the weakly nonlinear approximation, we can assume [8]
IK'141<11<11 = (17)

where s is the series expansion parameter.
One can evaluate the small parameter s as the ratio of the two Knudsen numbers that are calculated
by two characteristic spatial scales for the elastic and inelastic molecular collisions, respectively [8]

2.2. Examples

As the first example let’s consider mass and heat transfer in two-component systems like high dilute
solutions. In this case the cross fluxes may be disregarded [3, 4].

Thus we use simplest form of relaxation kernels

N, (Rt-1)=N(Rt)exp(-(t-11VT). (18)
Relations for mass and heat fluxes read

J1= | dtN (R, t- tDV v (R, tl), (19)
0
t

J2=JdtN2(R t - t2) . (20)
0

Thus, operating under the above methods applied to an isotropic media we are led to the following
transfer equations of a hyperbolic type [3]:

T £ -(1-T1f,,,,te ,,V V (21)

(22)
T2X =("-T4 " kW *nv

The case of a non-isotropic media is also considered in [3].

Equations (21), (22) closely resemble transfer equations for media with memory that are presented in
[2]. 1t’s easy to check also that under the exponential relaxation kernel the heat transfer equation (22)
corresponds with the Maxwell - Kattaneo law:

q+T~q=-XVT. (23)
dt
where
T
T= 2 cn=- TP -(VT2). (24)
_ A
1-T2é‘tI'I2 1T2atn2

Under the relaxation times that are far less than the observation time the above equations can be
considered by the methods of singular perturbations.

The next example we consider is mass and heat transfer in diluted two-component systems with
allowing for cross effects like the thermal diffusion and the Soret effect [4]. Model system for the
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relaxation kernels reads

X
m=-N ptpg + NRT; (25)
dt
" (26)
dt

The choice of signs in equations (25) and (26) is determined by the conditions of coupling distortions
ofthe temperature and concentration fields [4].
The solution of equations (25) and (26) can be written in the form

Nm=Nnmm+N m, (27)
Nh=Nh+N hn, (28)
Here:
n
N == N +—exp("s) - n+— exphs) (29)
N a2 F'mJ mJ
171 1
Nhh = NI +-——-exp("B)- N+--—exp(lx) (30)
n - n 1 ThJ h\]
N =Nm= °  [exp(AL)- exp(As)], (31)
Tx(J12- N)

were N1, 12 are eigenvalues of the system (25), (26).

From the condition of damping the perturbations in quasi-equilibrium systems it is readily available
that both eigenvalues should be negative. From this, one can obtain the inequality:

T > JImTh (32)

The time dependence of cross transfer kernels has a maximum. This phenomenon is caused by the
influence ofthermal diffusion or the Soret effect [4, 8]. The peak of the time dependence of cross transfer
kernels determines the period of increasing initial perturbations of the temperature and concentration
fields. This period is easily evaluated [8]:

*= g, =A (33)

n - n2
As it follows from (15) we can obtain equations of the 3rd time-order for heat and mass transfer in
the considered case.

3. Aggregation kinetic equations

Particles aggregation is widespread in different chemical technological processes, metallurgy and
nature, and there are many approaches to modeling this phenomenon [9]. At the same time, certain
important aspects in description of aggregation processes leave to be none elaborated at present. One of
these important but weakly developed questions is time non-locality of aggregation processes. Indeed,
without allowing for this aspect it is impossible to describe the influence of characteristic times of
aggregates formation on the process kinetics [10]. It is justified especially in reference to nano-
technological processes.

For describing the evolution of /[-mers concentration in the apparatus we can use various
modifications of Smoluchowski or Becker-D”ing equations expanded as required by terms which
correspond to a source of mass [11, 12].

This section deals with the non-local modification of Smoluchowski equation based on the approach
presented in the previous section. We don’t discuss here such especially physical problems as particles
nucleation, etc. But we try to understand and to emphasize some difficulties emerging in the act of
deriving non-local aggregation equations.
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So we submit the following non-local modification of the Smoluchowski equation for aggregation in
the uniform system:

it qtt
=2£ (K./-.C,(<iC-, - £ [[N/jC,(ti)Cj (t1)dtidt1 (34)
3100 3100

C, denotes the concentration of i -mer.

In our case the characteristic times Tt. of the aggregation of i and j - mers play a role of relaxation

times. The simplest model equation for elements of the aggregation matrix can be constructed by analogy
with model equation (6) for transfer kernels. We submit this equation as follows:

r (35)

where si =t-tx s.=t- 12

In equation (35) the coefficients rt on a level with relaxation time . play a part of control

parameters of globules “inertness”, the parameterf answers for media and particles characteristics.
Independent integrals of equation (35) read

f fo > n
Y i f 9
L |3 .
- W2 = N 1j exp s S
VrT.l_ rT .
1 B Yy Vj ] Y

Thus the aggregation matrix, satisfying equation (35) and coming up to the condition of fast
relaxation intimet >> T, jocan be written as

f
v 5 =Mnexp St+s (36)
r r
Let’s assume at the beginning r, =r, =1 and&: a, .=a=const.
Thus we have
dcc-=2 exp(-at) £ n.,-/A - exp(-at)/3£ n N . (37)
11 a t
Here £ meansf ; £ meansf ; 11=(exp(as/2)C,-.(s)ds;
1 =i 2 =i 0
t t

12=(exp(as/2)Cj(s)ds; 13 =(exp(as/2)C, (s)ds

We didn’t find way to rigorous reducing equation (37) to an ODE form even in that case. However,
we try to simplify the problem by using asymptotic behaviour of integrals in (37). Namely, it is supposed
that for small relaxation times we can use Laplace method in the neighbourhood of the time pointt. But
immediate substitution of the integrals expansions into equation (37) requires multiplying asymptotic
sequences. Such procedure is dangerous, as it may lead to utter loss of checking orders of approximation.

Therefore we rearrange the equations to the form which is free from a product of integrals:

at
.= - A i (Cj -l 2)- - A iCj (38)
+add(t: %expf 2TEI'IM j(Cjiv+CI-/ 2)-exp| 5 C/E n .12+h £n .jCj

Using then Laplace method we obtain the understandable asymptotic relations in which the orders of
equations and approximations are concerted
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, 4 athdC--j dC[-§(0)
/N == expl
a exp(T JC-1(t)- C-1(0) SR o
) 4 , atndcj dc, (0)
- oA explr —
expi -2J ¢ ()-cj(0) 2 P dt

2 4 at/ldct dct(0)
Aél>=; eXPly [Cr(t) - cr(0) . exp

2 J dt dt
As aresult we get

d02 +adC—2/’\7n 4 A
a2 T dt a1y CCh g leen) g, CCmRgCC)
L at 2 dct-, (0) 1 2dcj(0) Y

c +C C,(0)- +
-aex>rT J? n a dt dt
2 ( at 2 dcCj(0) 2dcC (0)

C C,(0)- -C C (0)-
+taexV T1TJ7n a dt a dt

Let’s consider now the general case.
The evolution equation reads

? Nu-jexp(- ("5j-j+gK V )/Y2-Z n.jexp(-(gS +gffX¥ 34

Hete g = aﬂn Gffh = A

j 2r.
t t
/1=Jexp(gjjlls)c-j(s)ds;/2=Jexp(g()_s)C;(s)ds ;

t t
/3=Jexp(g-js )CI(s)ds ; /4=Jex;p(ggs)Pr(s)ds .

By time-differentiating the evolution equation we obtain

dC
drz =L EM T (0] oK )exp(-(gf G+g H /Y24

+exp(-(gjj?-j +g 1 )[exp(g j-j)C-j/2+exp(g] -jt1Cj/1]}-
- 22n JH W+ g@ileXP(-(or@ + g ())t)/3 4+

+exp(-(g@ +g "y )[exp(gj )C14+

(39)

(40)

(41)

(42)

(43)

(44)

Unlike the first case we can’t now get rid of the products of integrals with the help of equation (34).

That is why we are forced to resort to separate averaging of sums containing / ¥ 2 and/ 3/ 4 [10].

There are not indisputable grounds for such procedure but we assume that (44) can be rewritten in the

following form using coefficients Ar and Bt as functions oftimet :

dcC
dt2

-1
-2OArE M -jexp(-(gj j+49ij )l 2+

+BrZn,j exp(-(gS +g(Mt)/I4+®
2
Here
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o = 22 £1|'| 111 exp(- (gjJ-j +gL L )[exp(gL-LY)Ci-jl2+exp(g. jHCjII+

(46)
+ £2 exp(-(gS +gff)t)[exp(gSt)CI 4+ exp(gu t)CU 3].
By repeated time-differentiating we get
dGd }fAz - N n./-jexp(-(g;j-j +gM 11 2-
\%
. (47)

B1-~P \E MJexp(-(gS +gJwW 34+~ o

The scheme of subsequent transformations is like that.
1 From (43) and (45) we infer the expressions for sums containing 1112 and | 314.

2. Then we substitute these expressions to equation (47) and use asymptotic relations for integrals
once again.

By realizing this clear scheme we obtain the three-order ODE of rather unwieldy form, and it is no
need to presenting this equation here.

In any case, it is possible to conclude at once that account of an interference of non-simultaneous
perturbations of i-mers concentration field may be important on close examination of aggregation
processes. This shade was missed in our work [10].

4. Conclusion

In this paper we submit a brief introduction to the problem of time nonlocality both of mass and heat
transfer and aggregation processes. In essence, here we give only formulation of the problem and then try
to show that the relaxation kernels approach may be advantageous for deriving governing evolution
equations with accounting of hierarchy of relaxation times.

Now it has become evident that transfer equations based on the Fourier and Fick laws don’t give an
adequate description of high rate or nano-scale technological processes. As for aggregation processes, an
importance of accounting relaxation phenomena is obvious. In this paper we didn’t submit results of our
numerical experiments because these results were dependent on the form of a static part of coagulation

kernelsn j , but discussion in this problem was not our goal here. Some results of these experiments can

be found in our works [10-12, 13].

The approach of relaxation transfer kernels can be tested for modification of the Becker-During
aggregation-fragmentation equation too [14, 15]. It may be interesting also to consider the problems of the
gelation behaviour and other dynamical phenomena in the systems described by new evolution equations
[16-18].

In our opinion, the relaxation kernels approach may be considered as the unified method for creating
engineering models of transfer and aggregation processes [19, 20]. We think, this problem merits closer
inspection of investigators.
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