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Аннотация. В статье дан обзорный анализ математических моделей для описания тепло- и 
массопереноса и агрегационных процессов с помощью метода релаксационных ядер переноса, который 
открывает новые возможности для детального изучения влияния иерархии времен релаксации на 
интенсивность высокоскоростных и нано-масштабных технологических процессов.
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Abstract. The paper deals with mathematical models describing heat and mass transfer and aggregation 

processes with the help of relaxation transfer kernels approach, which opens up fresh opportunities for detailed study 
of influence of relaxation times hierarchy on the intensity of high rate and nano-scale technological processes.

1. Introduction
Consideration o f relaxation times and long-range interaction o f structural components o f a medium is 

a great practical and theoretical problem [1-3] that is relevant in cases o f high rate or nano-scale 
technological processes. The operation cycle o f these processes is short, and the entire process may go on 
under the transient regime. In this connection, resources o f effective controlling such processes are 
limited, and it is important to calculate correctly and select the best values of governing parameters.

Problems o f modeling both high rate and nano-scale processes are in touch with construction of 
equations with retarded or divergent arguments that reflects the actual mechanism of transfer phenomena 
in the medium modeled as a system of interacting oscillators with a set o f partial frequencies and 
interaction potentials [2, 3].

At the same time, though realization o f that investigation program is very tempting, it’s unlikely to 
promise near creation o f the reliable engineering methodology for calculating heat and mass transfer 
processes. The alternative approach to the problem is the methodology of relaxation transfer kernels, 
which can be calculated from model evolution equations [3]. In a few articles before we elaborated upon 
this approach to modeling heat and mass transfer in high rate processes [3-8].

In this article we summarize briefly our results in the area o f description o f time nonlocality applied 
to heat and mass transfer and try to develop this approach for describing time nonlocality in aggregation 
processes. We concentrate our attention upon a problem o f equations structure, touching on the problem
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of analytical solutions o f government equations in the lesser degree.

2. Mass and heat transfer equations
2.1. M ain concept
Relaxation transfer kernels are the kernels o f integral transformations that, in the statistical theory of 

dissipation processes, relate fluxes with thermodynamic forces [1]. The general structure o f these relations 
for components fluxes in a multicomponent system according this methodology is like that [6]

J ,  (R , t ) = J , (R, to) +  £ f f  d t i d R N k  (R , R ’, t, t i ) F t  ( R ’, t) .  (1)
к=1

Limiting one self to the time nonlocality in the multicomponent system, one can write expressions 
for the n  linearly independent mass fluxes J , o f components and the heat flux J h as

J ,  = - i  j  d ti N k  (R, t -  o v f ^ ^ l - }  dt, N IT (R, t - 1,) 'VT~ , (2)
k=1 0 V T J  0 T

n  ̂ f v  ( t  ) i  ̂ T
J T = - X j  d t 2N Tk (R ' t  -  t 2)V k ’ 2 ]- j  d t 2N TT ( R  t -  12 ) T ^ T ,  (3)

к=1 0 V T J  0 T

where v , is a chemical potential; R  - space coordinates; T  - temperature; t  - time.

For a more compact description, let’s assume vn+1 = - 1 .  Then, in expressions (2), (3), one can

replace the subscript h  by n  +1 and write a unified form for the mass fluxes and heat flux in the 
multicomponent system.

n+1 ‘ ( R t  ) ]
J , = - T j d t , N k (R ,t - <1)v[ k( ’ ■' ]. (4)

V T
_________ , f v  (R  О  ]

1 ik
k= 0

Let’s also introduce notation for the integral terms

‘ 7(  v k ( R  t1) 1 , _ . ... . v I l-f I _ I I \,ik 1 ikI k  = j d t , N , k (R , t - t ^ V  k ' ■' . (5)

Now, instead o f equations (2), (3) we get
n+1

J , = - X 1 ik (6)
k=1

For calculating the relaxation transfer kernels we can use various approximations which are based on 
information about the physical mechanism o f the processes [1, 2]. However, the analyses of various data 
[1, 2] as well as our own experience [4-8] allow us to submit the heuristic unified model equation for 
relaxation kernels

d N  n
d  = - N t -  + Z  N T 1, (7)

d  k=1 
k *i

where, in order to be in agreement with the Onsager principle, it is assumed that Tik = T ^  .
O f course, it’s impossible to warrant that form (7) is actually universal. But we shall consider 

equation (7) as the base model for our further constructions.
The matrix o f system (7) is symmetrical; therefore, all its eigenvalues are real. In this connection, 

solution (7) can be represented as the sum o f the forward and cross terms o f the transfer kernels [6]:

N  = 1  N ,k  , (8)
k=1

where all items are real exponents and N ik = N ^  .
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As it is shown in [6] with the help o f the above model we can infer the following relations for 
integrals (5):

Я *
d t

v k I k— • (9)

where for isotropic medium we suppose [3]

дг!гк
dR

= 0 (10)

So then, as a result o f the repeated differentiation o f (4) up to derivatives o f the ( n  +1 )-th order, the

d t °

n +1

following relationships are obtained (where for any function— — = Z  ):

dt" k=1
(-1 ) "*' I - (11)

k=1 4k

Thus, for each o f the components we obtain a system which consists o f (n +1) equations connecting 
the component flux with its derivatives up to (n +1) order inclusive.

The matrices o f the obtained systems are not degenerate

det M . = det
V Tik J

(12)

In this connection, from the (n +1) equations that are linear relative to integrals I ik , one can 

express all these integrals through the derivatives o f fluxes J  г and then substitute the obtained 
expressions into equation (6).

As a result, one can come to the linear differential equation o f the (n +1) th order for the fluxes of 
each o f the components [6]

L
d t n d t n

,...J , ;v „ .. . ,v n = 0 . (13)

where L  is the linear operator.
The succeeding deduction is based on the conservation laws:

d v i  

~dt
(14)

Acting on expression (13) by the nabla operator and using equation (14), we can obtain the 
differential equation o f the (n + 2) th time-order for the potential o f each o f the components

L
f d  n+2( v ,) d  n+1(v ,) d v , v  2 v  2 

------— ------—  —  ;v1,..,vn; V 2v „ k , V  vn
Л

d t n d t n d t
= 0

(15)

The nonlinear generalization o f equation (4) can be represented in a nonlocal quadratic form with 
tensor kernels [6, 8]
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J : = - Z /  d <1 N 1 4  R - ‘ -  О  'V —

£  £  U  < * А  Ng> (R, t - 11, t -  t y  v V R ^  У  V ( R ’°  ̂
(16)

k=1 _P=1 0 0 T

In the weakly nonlinear approximation, we can assume [8]

IK ’II 4 1  <11 <11 ■ (17)

where s is the series expansion parameter.
One can evaluate the small parameter s  as the ratio of the two Knudsen numbers that are calculated 

by two characteristic spatial scales for the elastic and inelastic molecular collisions, respectively [8]

2.2. Examples
As the first example let’s consider mass and heat transfer in two-component systems like high dilute 

solutions. In this case the cross fluxes may be disregarded [3, 4].
Thus we use simplest form of relaxation kernels

N , ( R t  - 11) =  П ( R t )  exp ( -  (t - 1 1V T ) . (18)

Relations for mass and heat fluxes read

J 1 = |  d t1 N 1 (R, t  -  t1)V v (R, t1) ,
0

t

J 2 = J d t2N 2( R t - t2) .
0

(19)

(20)

Thus, operating under the above methods applied to an isotropic media we are led to the following 
transfer equations of a hyperbolic type [3]:

т . £ - ( 1  - T 1 f , „ , t e  „ V  V .

т 2 ж = ( '  - т 4 " , к Ш  * n v

(21)

(22)

The case o f a non-isotropic media is also considered in [3].
Equations (21), (22) closely resemble transfer equations for media with memory that are presented in 

[2]. It’s easy to check also that under the exponential relaxation kernel the heat transfer equation (22) 
corresponds with the Maxwell -  Kattaneo law:

q  + T ~ q  = - X V T .
dt

where

т =

1 - T 2 ^  П2 at

, Л = - П2

1 - T 2 ^  П2 
at

-(V T 2) .

(23)

(24)

Under the relaxation times that are far less than the observation time the above equations can be 
considered by the methods of singular perturbations.

The next example we consider is mass and heat transfer in diluted two-component systems with 
allowing for cross effects like the thermal diffusion and the Soret effect [4]. Model system for the

т2
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relaxation kernels reads
Ж

dt

N

dt

m = - N  t  - + N hT - ,m m h x (25)

(26)

The choice of signs in equations (25) and (26) is determined by the conditions o f coupling distortions
of the temperature and concentration fields [4].

The solution of equations (25) and (26) can be written in the form

N m = N mm + N mh ,

N h = N hh + N hm ,
Here:

N  =■

Nhh =

Л  - Л 1

1 л
Л  +----- e x p (^ s )  -

г.

Л  - Л 1

1

mJ
Л

Л  + —  e x p ^  5)
mJ

N  = N  =mh hm

Л  +-----exp(^15) -
Th J

Пх

1
Л + -----e x p ( l2 s )

h J

Tx (Л2 -  Л  )
[exp(A1s) -  exp(A2 s ) ] ,

(27)

(28)

(29)

(30)

(31)

were Л ,  Л2 are eigenvalues o f the system (25), (26).
From the condition o f damping the perturbations in quasi-equilibrium systems it is readily available 

that both eigenvalues should be negative. From this, one can obtain the inequality:

J 1т > J t  Thx x m h (32)

The time dependence o f cross transfer kernels has a maximum. This phenomenon is caused by the 
influence of thermal diffusion or the Soret effect [4, 8]. The peak o f the time dependence o f cross transfer 
kernels determines the period o f increasing initial perturbations o f the temperature and concentration 
fields. This period is easily evaluated [8]:

* =  s ,  = ^  (33)
Л  -  Л 2

As it follows from (15) we can obtain equations o f the 3rd time-order for heat and mass transfer in 
the considered case.

3. Aggregation kinetic equations
Particles aggregation is widespread in different chemical technological processes, metallurgy and 

nature, and there are many approaches to modeling this phenomenon [9]. At the same time, certain 
important aspects in description o f aggregation processes leave to be none elaborated at present. One of 
these important but weakly developed questions is time non-locality o f aggregation processes. Indeed, 
without allowing for this aspect it is impossible to describe the influence o f characteristic times of 
aggregates formation on the process kinetics [10]. It is justified especially in reference to nano­
technological processes.

For describing the evolution o f /'-mers concentration in the apparatus we can use various 
modifications o f Smoluchowski or Becker-D^ing equations expanded as required by terms which 
correspond to a source o f mass [11, 12].

This section deals with the non-local modification o f Smoluchowski equation based on the approach 
presented in the previous section. We don’t discuss here such especially physical problems as particles 
nucleation, etc. But we try to understand and to emphasize some difficulties emerging in the act of 
deriving non-local aggregation equations.
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So we submit the following non-local modification o f the Smoluchowski equation for aggregation in 
the uniform system:

i /—1 t t ад t t
= 2 £  ( К . / - ,C , (< i)C - , -  £  [[N /.jC ,(ti)C j ( t1)d tid t1 (34)

J=1 0 0
C , denotes the concentration of i -mer.

J=1 0 0

In our case the characteristic times Tt .  o f the aggregation of i and j  -  mers play a role o f relaxation

times. The simplest model equation for elements o f the aggregation matrix can be constructed by analogy 
with model equation (6) for transfer kernels. We submit this equation as follows:

(35)

where s i = t  -  tx s . = t  - 12

In equation (35) the coefficients rt on a level with relaxation time т.  play a part o f control 

parameters o f globules “inertness”, the parameter f  answers for media and particles characteristics. 
Independent integrals o f equation (35) read

s, s ,щ  = _ ^ ---- Lj Щ2 = N 1 . j exp

f  f  0 >
i.j

r T ■V 1 '.j  у

f  f  0J  /. j
Л

r  T  .V j j У
Thus the aggregation matrix, satisfying equation (35) and coming up to the condition o f fast

relaxation in time t  >> т , , , can be written asj

N , . j  = П и  exp
f Sl + s

r  r

f 0J 1.Let’s assume at the beginning r , = r , = 1 and—— = a, . = a  = c o n s t .

(36)

Thus we have

dCC- = 2 exp(- a t ) £ п . , - / А  -  exp(- a t )/3 £ п , Л .

t1-1 ад t
Here £  means £  ; £  means £  ; I 1 = (  exp(as/2)C ,- .  ( s ) d s ;

1 j=1 2 j=1 0 
t t  
(  exp(a s / 2)C j (s ) d s ; 13 = (  exp(as/2 )C , (s )d s

(37)

I 2 =

We didn’t find way to rigorous reducing equation (37) to an ODE form even in that case. However, 
we try to simplify the problem by using asymptotic behaviour o f integrals in (37). Namely, it is supposed 
that for small relaxation times we can use Laplace method in the neighbourhood o f the time point t . But 
immediate substitution o f the integrals expansions into equation (37) requires multiplying asymptotic 
sequences. Such procedure is dangerous, as it may lead to utter loss of checking orders o f approximation.

Therefore we rearrange the equations to the form which is free from a product o f integrals:

+ a d C - = 2 expf - ^ т Е П м - j (C j I 1 + C /- / 2) - e x p| - ^d t  2 2

a t

2 C / £ п ..1 2 +  h  £ n . j C j (38)

Using then Laplace method we obtain the understandable asymptotic relations in which the orders of 
equations and approximations are concerted
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/ ^  =-
a exp(  т  J C  - ] ( t ) -  C  - ] (0) a

expl
a t  ̂  dC- - j d C г- j (0)

2 J d t
г - 1 
d t

2

/  (1> = ■ A3
a

expi - 2  J c (t) -  c j (0)

eXP| у  |Сг (t) -  С г (0)

expl —
a t Л d C  j d C , (0)

a
exp

2 J d t  d t

a t  Л d C t d C t (0)
2 J d t  d t

As a result we get
d  C  d C  2 ^
— 2- + a — -  = — ?  n ,  
d t 2 d t  a  1 j

1 ( a t

-  a  ex> r  т  J? n

C ,C  - ,  -  - y ,  (c , c , - , )a  d t
4 ^
a

C .C , -  - d  C C )
a  d t

C
2 d C t - ,  (0) Л

a  d t
+ C C , (0) -

2 d C j  (0) Y

a  d t
+

2 (  a t

+ a  exV  т  J ?  n
C C, (0) -

2 d C j  (0 ) ' 

a  d t
-  C C  (0) -

2 d C  (0) 

a  d t

Let’s consider now the general case.
The evolution equation reads

?  П и - j exp(- (^5j - j + g K V  ) /1/ 2 -  Z  n . j  exp(- ( g S  + g f fX  ¥ 3/ 4

(г) a  a
Here g (г) = m’n • g (}) = m-n • n c ic om, n n, ’Om,n ^ ’2 r  2r.i j

t t 
/ 1 = J  exp(g j j ! ] s ) c -_j ( s ) d s ; / 2 = J e xp (g (j)_;s)C ; (s)ds ;

(39)

(40)

(41)

(42)

(43)

t t
/ 3 = J  exp(g-j s )C J (s )d s  ; / 4 = J  ex;p(g g s )Р г ( s ) d s  .

By time-differentiating the evolution equation we obtain

d  C  
d t 2 = 1 1 П ,г  - j{ - (g j  j + g K ) exp(- (g j  j + g H  ) / 1/  2 +

2 i

+ exp ( - ( gjj?-j + g  Л  )[exp (g j - j )C-- j / 2 + exp (g j - j t  1Cj / 1]} -

- Z n , j  Н Й  + g (,jj)leXP( - ( gг(,гj) + g (j ) ) t) /3/ 4 +
2

+ exp ( - (  g (5 + g ^ y  )[ex p (g  j  ) C 1/ 4 +

(44)

Unlike the first case we can’t now get rid o f the products of integrals with the help o f equation (34). 
That is why we are forced to resort to separate averaging o f sums containing / 1 / 2 and/ 3/ 4 [10].

There are not indisputable grounds for such procedure but we assume that (44) can be rewritten in the 
following form using coefficients А г and B t as functions o f time t :

= -  О А г Е П  - j exp ( - (  g j  j + g j  )/ 1/  2 +
d C  = - 1  

d t 2 = 2  ,

+ В г Z n , j  exp ( - ( g S  + g (i1, ] ) t ) /3/ 4 + Ф

(45)

Here

2 4

4
2a

2 4

2

2
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Ф = 2  £ П ],1-] exp(- (g jJ - j + g  L L  ) [exp( g  L-L  1) C i- jI 2 + exp( g  .  j 1 )C j I 1] + 
2 1

+ £  exp ( - ( g S  + g f f  ) t )[exp (g S t ) C JJ 4 + exp (g u  t ) C 1I 3] .
2

By repeated time-differentiating we get

(46)

d C /  1 f  A2  -  ^  п . / - j e x p (-(  g ; j- j  + g  M  ) t  1 1 2 -d t3

f
2 V

B 1 -  ^ Р \£  П/.J exp ( - ( g S  + g J W  31 4 + ^  •

(47)

The scheme o f subsequent transformations is like that.
1. From (43) and (45) we infer the expressions for sums containing I 11 2 and I 314 .
2. Then we substitute these expressions to equation (47) and use asymptotic relations for integrals 

once again.
By realizing this clear scheme we obtain the three-order ODE o f rather unwieldy form, and it is no 

need to presenting this equation here.
In any case, it is possible to conclude at once that account o f an interference o f non-simultaneous 

perturbations o f i -mers concentration field may be important on close examination o f aggregation 
processes. This shade was missed in our work [10].

4. Conclusion
In this paper we submit a brief introduction to the problem o f time nonlocality both o f mass and heat 

transfer and aggregation processes. In essence, here we give only formulation o f the problem and then try 
to show that the relaxation kernels approach may be advantageous for deriving governing evolution 
equations with accounting o f hierarchy o f relaxation times.

Now it has become evident that transfer equations based on the Fourier and Fick laws don’t give an 
adequate description o f high rate or nano-scale technological processes. As for aggregation processes, an 
importance o f accounting relaxation phenomena is obvious. In this paper we didn’t submit results o f our 
numerical experiments because these results were dependent on the form of a static part o f coagulation 
kernelsп  j , but discussion in this problem was not our goal here. Some results o f these experiments can

be found in our works [10-12, 13].
The approach o f relaxation transfer kernels can be tested for modification o f the Becker-Dцring 

aggregation-fragmentation equation too [14, 15]. It may be interesting also to consider the problems of the 
gelation behaviour and other dynamical phenomena in the systems described by new evolution equations 
[16-18].

In our opinion, the relaxation kernels approach may be considered as the unified method for creating 
engineering models o f transfer and aggregation processes [19, 20]. We think, this problem merits closer 
inspection o f investigators.
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РЕЛАКСАЦИЯЛЬЩ ЯДРОЛАРЫНЫН ЭД1С1 

А. С. Муратов, А.М. Бренер, Л. Ташимов

Ощустж ̂ азакстан мемлекеттж университет, Шымкент, ^азакстан
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Аннотация. Макалада жогары жылдамдыкты жэне нано-масштабты технологиялы; процестердщ интенсивтштн 
релаксациялы; уакыт иерархиясыныц эсерш белектеп бшш шыгуга жаца MYMкiндiктердi ашатын, релаксациялы; 
ядролар тасымалдау эдiсiнiц кемепмен жылу жэне масса тасымалдауды жэне агрегациялы; процестердi сипаттау Yшiн 
математикалы; моделдерiн жалпылай талдау берiлген.
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