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Abstract. This article is devoted to studying algebraic propertics of Rogers semilattices of generalized
computable families of total functions. Indeed, it is a continuation of attempts to find the elementary properties of
the corresponding Rogers semilattices, which differ from properties of the classical Rogers semilattices for families

of computable functions. Families of total A -computable functions, where §' <r A , will be considered. The basic
idea was taken from [1].

Some definitions and notations. For a family /' of total functions a numbering o :@ —> F' is
called computable if the binary function AxAya(x)(y) is total recursive. Let o :@ —> [ and

L@ — F be two numberings of the same set /. We say that the numbering o is reducible to the
numbering [, if there is a computable function f* such that & = S o [, and we write this symbolically
as: a < . If a <f and [ <« then the numberings & and [ are said to be equivalent, written as
o = . Denote by deg(e) the degree of « , that is, the set {f | f = &} of numberings. The reducibility
of numberings is a pre-order relation on the set of all computable numberings of a family /', which we
denote by Com(F’), and it induces a partial order relation on a set of degrees of the numberings in
Com(F’) , which we also denote by <. The partially ordered set R(F') = <{deg(0{)|0{ e Com(F )},£>
is an upper semilattice, which we call the Rogers semilattice of the family F'.

A numbering & of a set F is called minimal if, for any numbering £ of /', f <« implies that
o <. A computable one-to-one numbering is called a Friedberg numbering. The numerical
equivalence @, of a numbering ¢ is defined as follows: 8, = {(x, y)|a(x) = a(y)}. An equivalence
relation 77 is said to be decidable (positive) if 77 is computable (computably enumerable). For the further
undefined notions we refer to [2, 3].

Let /7 be a family of total functions which are computable by an oracle 4. A numbering
o @ —> F is called 4 -computable if the binary function a(1)(x) is A -computable, [4]. A family F

is called A -computable if it has an A -computable numbering. If A is a recursive set, then we are
dealing with a family of computable functions and its classical computable numberings. The partially

ordered set R ,(F) = <{ deg(a)|a e C (FF )},S) , where C ,(F') denotes the set of all A -computable

numberings of the family F', is called the Rogers semilattice of the family F', [4].
It is known that the Rogers semilattice of every infinite Z;sz -computable family contains an infinite

number of minimal elements, and if a family S < Y., has a Y., ,-computable Friedberg numbering
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then S has an infinite number of non-equivalent positive undecidable Z?Hz -computable numberings and

an infinite number of non-equivalent Z;sz -computable minimal non-positive numberings, [1].

Generalizing these results according to [4] and doing some simplifying in their proofs we have the next
statements.

Theorem 1 [5, 6]. Let /' be an infinite A -computable family of total functions, where 0'<, 4.

Then /' has infinitely many pairwise nonequivalent 4 -computable Friedberg numberings.
This theorem is obtained after generalization theorem 1 from [5].

Theorem 2. Let /' be an infinite A -computable family of total functions, where 0'<, 4. Then F

has infinitely many pairwise nonequivalent positive non-decidable A4 -computable numberings.
Proof. By theorem 1, suppose that o is an A -computable Friedberg numbering of the family F .

Let M be a maximal set and M = {m, <m, <m, <...} . Forall k € ® we construct numberings £, of
the family /" by the following way:
p.(m )=o) forany i € @, and f, (x) = (k) forany x e M .
Then
Y= m)(x) & (neM & y=a()x)or (1M & 3i([@ =n & y=al)x)).
where the relations ne M , n eM and m, =n are 0'-computable. Therefore S, is an A -computable
numbering of the family F'. Also
B.(x)=B.(y) & x=yor(xeMU{p} & ye MU{p}),

where pe M isa B, -index of the function a(k) . So, obviously, &, isa c.e. equivalence. Since the set

B, (a(k)) =M U{p} is not computable the numbering £3, is not decidable.
Now we will show that if & #/ then S, £ f,. Assume [, (x)= F,(f(x)) for some computable

function f. Since f,(x)# a(k) for any x e M , it follows that f(M) < f(B. (a(k))) =M . And
note that the set M \ f(B (a(k))) contains f -indices of all functions in F distinct from cr(k),

therefore this set is infinite. So, since M is maximal set, the c.e. set f(M) is finite. Moreover, by
computability of the set £ (f(M)) ={y|f(¥)e f(M)}, the set M is computable, which contradicts
with maximality of the set M .

Theorem 3. Let /' be an infinite A -computable family of total functions, where 0'<, 4. Then F

has infinitely many pairwise nonequivalent minimal non-positive 4 -computable numberings.
Proof. By theorem 1, suppose that & is an A -computable Friedberg numbering of the family F .

Let M be a maximal set and M ={m, <m, <m, <...}. By theorem 2, we know that if we define
numbering [ of the family /' by the following way:
L(m,)=a(i) forany i € @ ,and P(x)=c(p) forany x € M with fixed pe @,
then B is positive non-decidable A -computable numbering of F such that B '(a(p)) is a non-
computable c.e. set. For all k£ € @ we construct numberings 7, of the family / by the next way:
y.,(m) = p@i) forany i €, and y, (x)= [(k) forany x e M .

We will show that if B(k)# a(p) then y, is a minimal non-positive A -computable numbering of

I . First, we prove that y, is a minimal numbering. Let ¥ be a numbering of 7 which is reducible to

¥, via some computable function f, where rng(f)=W . Since F' is an infinite family and

7. (x)= p(k) forany x € M , it follows that the set W MM is infinite. Then, by M is a maximal set,
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M \W is a finite set. Now we construct a computable function g reducing y, to 7. We enumerate the

sets M and W simultaneously, and for every x € M UW if x appears in M first then g(x) is equal
to some fixed ¥ -index of the function S(k) (for example, g(x)=c = s, (1. (f(z) = f(m))), where

f is computable function such that rmg(f) =M ), otherwise g(x)=p,(f(y)=x). Finally if x

belongs to the finite set M\W then again g(x) is equal to some fixed ¥ -index of the function B(k).
which completes the construction.
Now it remains to show that if S(k)#a(p) then y, is a non-positive A4 -computable numbering.

7. (X)=a(p) forall xe W < M _since 7,(x)=B(k)#a(p) forall xe M ,where W =y, (a(p))
is infinite set. If ¥, were positive numbering then the set W would be c.c. set, it follows that @ \ W isan

infinite set since M C o\ W , and W \M is an infinite set since W - M , which contradicts with the
affirmation that A/ is maximal set.
Theorem 4 [7]. Let /' be an A -computable family of total functions, where 0'<, 4. If F

contains at least two functions then /* has no A -computable principal numbering.

This theorem is obtained after generalization theorem 3 from [5].

If for any non-principal A -computable numbering & of a family S we can find an A4 -computable
numbering f of § such that deg(f) >deg(ex), and for every degree deg(y), if

deg(ar) < deg(y) <deg(f) then either deg(y) = deg(ex) or deg(y) =deg(S). then deg(f) is called

a minimal cover of deg().

It is known that if a family S 22” contains at least two sets ' and D, and o be a Z?ﬁz-
computable numbering of S, and if the set & '(C) is O'-computable, then deg(cr) has a minimal

cover, [1]. But we have the next statement for an A -computable family of total functions.
Theorem 5. Let /' be an A -computable family of total functions and let & be an A -computable
numbering of /', where 0'<, A. If F' contains at least two functions then deg(cr) has a minimal

cover.
Proof. By theorem 4, we know that any numbering of /' is not principal. Let M be a maximal set

and M ={m, <m, <m, <...}. Then there exists an one-to-one computable function f such that
f(w)=M . If we define fB(x)=a(f '(x)) forall xeM then < via f and S is an A-
computable since f ' (x) is @'-computable set. Now we take f;, f, € /' and find a number a € @ such
that f,(a)# f,(a). We complete construction S by defining values S(x) for xeM . 1If o, (@)
and a(e,(m,))a)= f,(a) then we define S(m,) = f,, otherwise [(m,)= f,. It is clear that [ is
still an  A-computable. We will show that f£a. Suppose [(x)=a(p,(x)), xco,
for some computable function ¢,. Put x=m,. If a(e,(m,))(a)= f,(a) then by construction
B(m, )a) = f,(a) # f(a) = alp,(m,))(a). contradiction. If (g, (,))(a)# f(a) then by
construction fG(m, )a) = f,(a) # a(e,(m,))(a), contradiction again. Therefore deg(cr) <deg(f).
Now let ¥ be an A -computable numbering of 7 such that & <y and ¥ < . Suppose ¥ < [ via
computable function A~ where rng(h)=V then y=[h, also we know that ¢ =/ f where
rng(f)=M . Since B f <Ph<p, it follows that we can assume M CV C @ (otherwise we can

redefine the function / such that the condition is satisfied). Since the set M is maximal, either ® \ V' or
V' \M is finite. In the former case (for obvious reasons) ¥ = £, in the latter case ¥ =« .
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POJAXEPC KAPTBITOPJAPBIHIAAYBI MUHUMAJI DJIEMEHTTEP
KOHE MUHUMAJI ’KABYJIAP

Ac. A. HcaxoB
On-Oapadu arerHIarsl Ka3ak yirTeIK yHEBEpCHTETI, AMaTsr, KazakcTan

Tipek ce3aep: MEHUMAI HOMIpPICY, IO3UTHB HOMIPIICY, MCIIITIM/II HOMIPIICY, MUHHMAII Ka0y.

Annoranmusa. Makana OapibIK KEPAC AHBIKTAIFAH (PYHKIMSAIAPIBIH SKAMMBUIAHFAH CCCMTCIIMIL YHipACPiHIH
Pomxepe skapTHITOPAAPHIHBIH aAreOpaiblK KaCHETTEPIH 3epTTeyre apHanFaH. MyHza aiiteurran Poxaepc »aprsi-
TOPIAPBIHBIH, SCCNTSTIMAIL (()YHKIISIAP YHIPICPiHIH KIACCHKAIBIK POIKepC AKAPTHITOPIAPIHAH AHBIPMAIIBLIBIFBIH
KOPCETETiH 3IeMCHTAP KACHETTEpiH isaey skamracyma. (' <5 A 6onareiHmait GapibIK Kepae aHBIKTANFAH A-ecen-

Temmal QYHKIpsIap YHipiepi KapacTsIphlIaasl. MakanaHblH HET13rl uaeanaps! [1]-aeH anbHFaH.

MHWHHUMAJBHBIE 3JIEMEHTBI H MUHUMAJIBHBIE IOKPBITHA
B IOJYPEHIETKAX POJKEPCA

Ac. A. Hcaxos
Kazaxckuii HaHHOHATBHBIM YHUBEPCUTET UM. anb-Papadbu, Amvarsl, Kazaxcran

KimoueBnbie ciioBa: MUHAMAIbHAS HyMEpALWs, TIO3HTHBHAS HYyMEPALHs, pa3perinMas Hy Mepaluysi, MHHIMATb-
HOC MOKPBITHUE.

Annoranusa. CTaThs TOCBAMICHA H3YVUCHHIO ANTCOPAHICCKHX CBOHCTB MOJypemeTok Pomkepca, 0000meHHO
BBIUMCIMMBIX CEMEHCTB BCIOY ONpPEACICHHBIX (yHKumi. Ha camoMm fene, 310 MPOAOIDKEHHE MOMBITOK HAWTH 3JIe-
MEHTapHBIC CBOICTBA COOTBETCTBYIOINMX MOJypEIIeTOK Pomakepca, OTIMYHBIX OT CBOWCTB KIACCHUYECKHX MOJIype-
meTok Pompkepea st ceMeiicTB BRMUCIAMBIX (D)YHKIMH. By 1yT paccMaTpuBaThCs CEMEHCTBA BCIOAY OIPEACICHHBIX

A-praucimmbix Qyaxmmi, rae 0 <r A . OcroBHsIC HeH B34TH 13 [1].
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