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Abstract. This paper is a continuation of study on analytical solution of heat equation with third type boundary
conditions where initial conditions were not considered. Solution of the problem was found analytically.

Introduction. A lengthy paper [1] by D. V. Widder devoted to properties of heat polynomials.
Classical methods represented in [2] and [3] are inapplicable for degencrate domains. In this paper we
consider analytical solution of the heat equation with discontinuous coefficients in domain with moving
boundary which degenerate at the initial time. We follow the method represented in [4] and utilize heat
polynomials and integral error functions to solve the problem.

Problem statement. It is required to find the solution of the Heat Equation
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the conditions of conjugations of temperature and heat flux on a free boundary are
u,(00,6)=0 4
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a(0)=0, u,(0,/)=0 (6)

Problem solution. We represent the solution in the following form:
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u, (x, t) = nﬁ;Bn (2a2t)% {i”erfc _i/_} + Z.O:Cn (2a2t)% {i”erfc 22\/;} ®)

where coefficients A4, , A

4,1, B,,C. have to be found. Using Hermite polynomials we represent (7) in

the form of Heat polynomials:
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Making substitution \/; =7
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From (5) for x =0
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Using above expression we have
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To find 4,, we use multinomial coefficients of Newton’s Polynomials.

It 1s known that
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after making substitution 7 = \/; we have
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1s a multinomial coefficient in our case

Thus to derive recurrent formula for A4, , we take both sides of (5), 2k — times derivatives at 7 =0,
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we use multinomial coefficients and get following expressions.
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where /=1,2.... and
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