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Abstract. Solution of One Phase Stefan Problem with degenerate free boundary represented in explicit analytic
form. The developed method is based on the use of Integral Error Functions and its properties. The main idea of this
method is to find coefficients of lincar combination of Integral Error Functions which a priori satisfy the heat equa-
tion. Convergence of series proved. Method was tested and applied in experimental problem.

1. Introduction. A wide range of transient phenomena in the field of heat and mass transfer, low-
temperature plasma, filtration and other evolutionary processes associated with phase transformation of
materials considered in quite extensive literature; see, e.g., [1-7], and a long bibliography on these
problems given in [8] leads to the necessity of solving boundary value problems of heat and mass transfer
with free moving inter-phase boundaries.

From theoretical point of view, these problems are among the most challenging problems in the theory
of non-linear parabolic equations, which along with the desired solution, an unknown moving boundary
has to be found (Stefan type problems). In some specific cases it is possible to construct Heat potentials
for which, boundary value problems can be reduced to integral equations [4], [5], [9]. However, in the
case of domains that are degencrate at the initial time, there are additional difficulties because of the
singularity of the integral equations, which belong to the class of pseudo - Volterra equations which are
unsolvable in the general case, by the method of successive approximations [9]. Therefore, investigation
of methods for the solution of Stefan type problems is an actual mathematical problem.

Tracking answers of these questions will be as following. In the first section introductory information
and some properties of Integral Error Functions necessary for elaborating different methods (e.g. Heat
Polynomials method) are represented. In the second section one phase Stefan problem stated and the
solution represented. In the third section test problem with given exact solution is solved by proposed
method. Fourth section is devoted to discussion of further development of method for wider class of
problems.

1.1. Integral Error Functions

The integral error functions determined by recurrent formulas

i"erfox = J‘inflerfcvdv , n=1,2,... i‘erfex=erfex= iJ‘exp(—vz)dv 1)
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It is well known that the Integral Error Functions

u,(Ex,1) = tgi"erfc £x 3)

Za\/;

exactly satisfy the heat equation

ou _ 58

=a’— 4
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and by superposition principle, linear combination of (6) or even series also satisfy (4)
u(e,t) =Y [Au, (x.0+Bu,(=x.0)] 3)

n=0

We consider (4) and solution (5) in degenerate domain where constants 4,, B, have to be determined
and can be derived by substituting (5) into boundary conditions at x =0 and x =«(?), if given boundary

functions can be expanded into Taylor series with powers ¢ or Vi
1.2. Properties of Integral Error Functions
1. Using formula for Hermite polynomials one can derive

n

23 n-2m
&1 nen X
i"erfc(—x) + (~1)"i"erfex = mz:O 2 i 2m)! (6)
and represent (5) in the form of heat polynomials
u(X3 t) = Z |:A2nz X2rl-2mth2n,m + A2n+1 Z X2n2m+1th2n+l,m:| (7)
n=0 m=0 m=0
where
1
= 8
P 2" ml(n — 2m)! ®
2. Using L Hopital rule it is not difficult to show that
el B )
x—00 x" n!
2. One Phase Stefan Problem and its solution
Definition of One phase stefan problem, it’s physical interpretation.
2.1. Problem statement
Solve the Heat Equation
2
M _ 208 gox<oft), O<t<o, (10)
o o’
Subject to
cu
—k(——uj =P(t), O<t<o, (11)
aX x=0
ux:u(t) :Um: 0<[<OO: (12)
_;{@_uj 3B , O<x<a(t) (13)
ox - dt
u(0,0)=0 (14)
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It is necessary to find u(x,7)-heat transfer function and free moving boundary o(f) which can be
represented in the following form

alt)=3 ot (15)

2.2. Solution:
We represent solution in the following form

> n| :2n (=X) | .o X 3 = -2n+l (=x ) {2
u(x,t)=> A, (2at) {12 erffc—=+i1"erfc—= |+ ) A, ., (2at) * |1 erfc——= erfe——| (16
2A: Wt 2t 2 Ao (230 0t 2/t (1

and by property (6) we represent (16) in the form of Heat Polynomials

u(X: t) = Z |:A2n Z X2n-2mth2n,m + A2n+1 Z X2n72m+lth2n+1,m :| (17)
n=0 m=0 m=0
where A, and A, , coefficients have to be found.
From (11)
PH
Ay + Ao :B_ (18)
2n+l,n
where
(m
p =10 (19)
Making substitution Ji=tin (17) we have
u(X: t) = Z |:A2n Z X2n-2mszB2n,m + A2n+1 Z X2n72m+112mB2n+1,m :| (20)
n=0 m=0 m=0

we take both sides of (12) 2k — times derivatives at T=0 and get following expression

O(zk) ZA Z 2kB2nm+A2kZ 2k B2nm+ZA2nlzc 2k B2n1m (21)

It is easy to see that, if we express from (18) A in terms of A, and substitute it into (21) we

2n+1

obtain recurrent formula for A,

Thus A, coefficients are found from (21) where c[2k| multinomial coefficients, which can be found

as following are:
From (13)

K n
for 2k-th derivative we consider (15) in the form o(t) = Zcxnt2 because other coefficients o1 > 2k

n=1

don’t affect C|2k]

n . )
(al'f+a2'f2 +.“+a212k)“ - z ( ‘ ‘ ja (X a;zlf,l:)1+2jz+...+(2k)nk

Jitizte4ik=n j1:.]2:"':.]2k
n -(2k) 2k (2k)
We have [(oc(r)) 1 —[(oc T+0,T +..+0,T )"] =c[2k]

where

c2k]= > ( o jocflociz..aiﬁf (22)

ittt k= \ Jis J2se+5 Dok

and j;, i = 1,...,2k satisty the equations
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j+, ..+, =n (23)
j, +2j, +...+(2k)j,, =2k 24)

Making substitution \/_ =1 and taking both sides of (18) 2k and (2k+1) — times derivatives at t=0 it
is possible to derive o, coefficients as following

(O 15 = 0ty = DAY, [200-m)el2kB, ., + 3, A, S, [20-m)-1e[2K,,, 25
(@)1 = o, =S AL S Ra-ml2k+138,, . + YA, S 1[2(n m)+11e[2k]B,, .. (26)
fork=1,2,...

Thus from (18),(21).(25),(26) we derive A, , A
2.3. Convergence
Let a(t,) = 1, for any time # ={;. Then the series

and o, ., O, ,, respectively where n=1,2,...

2n+l

n=0

~ n| 2n (=H) | 2n _Hy
u(x,t,)=> 4, (2at,) |:l erfc—z\/Z +i erfcz\/g}r

2n+l

+> A4, Qat,) | i er c—(_'uO)—iZ"”er ot
Z 2n1( ) |: f 2\/5 f 2\/5

should be convergent, because U = U,, on the interface. Therefore there exist a constant C independent of
n, such that

2n+l
<C/(2at,) * {Z“Herfc( ) +i™erfo—to

2, f} =

|:2n+lerfc( (X(t)) 2n+1 If (X(t)

A

2n+l

Multiplying both sides of (27) by (2at) 2 } and taking sum we
24t 24t

obtain

anﬂ 2n+] (- Ol(l)) janl a(l)
ZAan(zal) |: erfe 2\/; erfe \/—:|

Z Aan (26”)271;1 |: .2n+1erfc%\;§» 2n+le}fc 2f/2:| .l 2r12+1 (28)
C = 2n+l Z(_j
T2 | 24l ( /Llo) 2n+1 /Llo =0 t
;AZnH (2at,) |: erfc——— \/; +i7" erfc \/;}

In the same manner, similar estimations for o can be obtained from (25) and (26)

Thus on the base of monotonicity of function {iz‘”lerfcM +i2“”erfc&} , and above
24t 2t
estimations it is possible to conclude that series (17) is convergent.
3. Test problem
Solve the Heat Equation

2
O _ 201 g cxcan), 0<t<l, (29)
ax2

— 57 ——
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Subject to
_ o =e', 0<t<l, (30)
ax x=0
Ux:a(t) = O, 0<[ <1, (31)
_ o] _Ga) , O<x<a(t) (32)
Ox — ot
u(0,0)=0 (33)
Exact solution:
u(x,H)=e"* -1 and a(t)=t (34)

Solution by Heat polynomials:

We consider solution in the form of heat polynomials (20) and it is necessary to determine A, , A, |
coefficients and free boundary (15). It is easy to see that from (30) we can directly derive A,
coefficients

P
A2n+1 = - (35)
BZn+1,n
m
where P(t)=¢', and P, = P—'(O) .
n!

In the same manner, to derive recurrent formula for A, , we take both sides of (31) 2k — times
derivatives at 7= 0 and get following expression

n

0= o<2k>—ZA Z Cl2KB,,,, +A, ). cl [2KB,,,. + YA, > CL2kBs 1 6)

Making substitution Ji=t and taking both sides of (32) 2k and (2k+1) — times derivatives at t=0
we derive recurrent formulas for o coefficients (25), (26) for k=1.2,...

For example if we expand (20) and calculate first four coefficients and o, o, we can easily find that
A, =0,A,=0,A =-1/2,A, = -8 and o, =1,a, = 0 which agree with exact solution (34).

4. Discussion and conclusion

Successful applications of represented method induce the question:

1) Isitpossible to elaborate similar methods for the Stefan type problems with several phases and for
two or three dimensional cases?

2) It can be shown that Generalized Integral Functions and their linecar combinations satisfy the
equation

6t Z oz

where v =123 are plane, cylindrical and spherical cases, which is very important for the modeling of Heat
transfer in solid with variable cross section.

3) One of the objectives of further research is to prove that mentioned Generalized Integral Functions
or elaborated Degenerate Hypergeometric Functions and their linear combinations satisfy above equation
forany v.

Main results namely coefficients of function (17) A4,,, A,,,, and free boundary are found analyti-
cally, convergence of (17) is proved.
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BIP ®A3AJIBI CTE®AH ECEBIHIH KbLTY NOJIUHOMJAPBI APKBLIbI
AHAJIMTUKAJBIK HTEIIIMI

M. M. Capcenreiniaa

Cynetimen [lemupen aTeiHAAFB YHEBEpCHTET, KackesneH, Ka3akcraH,
Maremaruka >k9He MATEMAaTHKANBIK YITICY HHCTUTYTHI, AmMarsl, Kazakcran

Tipex cosnep: Oip (azamer Credan, mHTETpANABI (Y HKIMACHIHBIH KEMIILTITL, YKBUIY OTKI3TIINTIK TCHACY1, JKCTIe-
PUMEHTTIK MACeneep.

Annotamus. bacTanmkel YakpITTa KYIIBIPAHTHIH, KBUDKBIMAI IICKApPack Oap aiiMakrapaa 6ip ¢asamst Credan
eceOiHiH JKbITY ITOJMHOMIAP aPKbLIbI AHATHTHKAIBIK INCIIiMI TAOBLIFAH.

AHAJIMTUYECKOE PEINIEHUE OJHO®A3ZHOM 3AIAYHA CTE®AHA
METOJOM TEILUIOBBIX HOJAHOMOB

M. M. Capcenrenina

Yuausepcurer M. Cyneiimara Jlemupes, Kackenen, Kaszaxcras,
WHCTHTYT MATCMATHKH M MATCMATHYCCKOTO MOACHpoBaHmd, AmvaTsl, Kazaxcran

Kmrouernie cioBa: ogrodasHas 3agaua CreaHaca, HHTCTPATbHAS MOTPCITHOCTS ()YHKIHH, YPABHCHUS TCILIO-
MPOBOTHOCTH, YKCIICPUMEHTAIBHBIC TIPOOICMBI.

Annoramus. Hadineno anamuTmueckoe pemcHue oauo(paszHoH 3amaun CredaHac BRIPOKIAIOMCHCS B HAYANb-
HBII MOMCHT BPCMCHHA I’paHHHefI MCTOAOM TCINIOBBIX ITOJIMHOMOB.
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