NEWS ## OF THE NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF KAZAKHSTAN SERIES OF AGRICULTURAL SCIENCES ISSN 2224-526X Volume 1, Number 43 (2018), 66 – 68 UDC 632. 4.:633.11 "321" #### A. A. Rsymbetov Kazakh national agrarian university, Almaty, Kazakhstan. E-mail: ashat_rsymbetov@mail.ru # THE FORMATION OF SPRING WHEAT VARIETIES RESISTANT TO BROWN RUST DISEASE **Abstract.** Kazakh-Siberian system (KASIB) of the spring wheat adaptation has been established by CIMMYT enterprise (Mourgunov and others, 2000) and unites 21 scientific selective institutions, and combines wheat area over 20 mln. hectares. Over 600 cultivars samples of common and durum wheat were examined as a result of the Kazakh-Siberian system (KASIB) cooperation of the spring wheat adaptation. There were determined the most high-yielding samples and samples with high resistance to effect of brown rust Key words: KASIB, spring wheat, brown rust, stem rust, disease. Spring wheat grain is a significant object of our export. The grain of spring wheat is mainly necessary for bread, cereal, macaroni production and for export. But to a large extent, as a result of incorrect plants growing practices or cultivars formation, wheat grains lose the valuable qualities and being used only for technical and feeding purposes. In order to form high-quality, stable growth of spring wheat grains, an extensive measure should be carried out. Nowadays, due to the fact of dangerous brown rust dispersion, and to reveal grains which have a resistance to brown rust, there has been established the Kazakhstan-Siberian System (KASIB) of the spring wheat adaptation which unites 21 scientific selective institutions [1]. The Kazakhstan-Siberian System (KASIB) of the spring wheat adaptation carried out the research of 49 varieties of spring wheat in order to reveal varieties which are resistant to brown rust in the period of 2013-2014 in Aktobe Agricultural Experimental Station, "Omsk State Agrarian University, Chelyabinsk Agricultural Scientific Research Institute, Karabalyk Agricultural Experimental Station, in the scientific-production firm "Fiton" and in testing institutions. In 2013, 49 kinds of varieties showed high resistance to brown rust at the Aktobe agricultural experimental station, all 49 varieties were up to 5-20%. It is a very good indicator. In 2013, during the cultivation of 49 varieties of spring wheat, the weather conditions were unfavorable for brown rust, on average, during the growing period, the amount of precipitation reached 0.80 mm, and the average day temperature was + 28°. In 2014, 0-10% of 49 varieties of spring wheat were resistant to brown rust, the amount of precipitation was 0.79 mm, average temperature of the day +30°. In 2013, in Omsk State Agrarian University, from 49 varieties only 15 varieties were resistant to brown rust with an interval of 0-20%, and 25-100% of 34 varieties contracted disease of brown rust. In 2014, 18 from 49 varieties, 0-20% were resistant to brown rust, and the rest 31 varieties, 30-100% contracted disease of brown rust. In 2013, on the experimental area of the Chelyabinsk Agricultural Scientific Research Institute, 36 of 49 varieties, 0-20% were resistant to disease, and the rest 13 grades, 30-70% contracted disease of brown rust. In 2014, 3 from 49 varieties in the range of 0-10% were resistant and the rest 46 varieties within 30-100% were infected with brown rust. In 2014, in the Karabalyk agricultural experimental station, 8 from 49 varietis of spring wheat, 20% were resistant to disease, the rest 40-100% of 41 varieties were deseased. In 2014, in a research-and-production firm "Fiton", 0-20% of 9 varieties were resistant to brown rust, and 40-100% of the rest 40 varieties were deseased (table). ### Manifestation of the brown rest in the research period (2013–2014) | | | I | Brown rust, % | | | | | |---------------------------------|------|------|---------------|------|-------|--------|-----------| | | Akt | obe | Or | nsk | Chely | abinsk | Karabalyk | | Variety | 2013 | 2014 | 2013 | 2014 | 2013 | 2014 | 2014 | | Steppe 1413 | 0 | 0 | 80 | 40 | 50 | 100 | 80 | | Steppe 1414 | 0 | 0 | 15 | 15 | 20 | 60 | 40 | | Steppe 1422 | 0 | 0 | 15 | 10 | 20 | 100 | 60 | | Lyazzat | 10 | 5 | 80 | 80 | 40 | 100 | 80 | | GVK 2031-13 | 5 | 5 | 100 | 100 | 40 | 100 | 40 | | GVK 2077-11 | 10 | 10 | 100 | 90 | 40 | 100 | 80 | | Lutescens 740 | 0 | 0 | 20 | 30 | 40 | 90 | 60 | | Lutescens 811 | 0 | 0 | 15 | 70 | 40 | 100 | 60 | | Lutescens 22 | 10 | 5 | 100 | 90 | 60 | 100 | 80 | | Lutescens 36 | 5 | 5 | 80 | 90 | 70 | 100 | 80 | | Lutescens 1519 | 0 | 0 | 100 | 90 | 70 | 100 | 100 | | Lutescens 1669 | 5 | 5 | 100 | 70 | 20 | 100 | 80 | | Lutescens 1764 | 0 | 0 | 80 | 10 | 20 | 100 | 100 | | Lutescens 12/93-01-4 | 0 | 0 | 80 | 80 | 30 | 100 | 100 | | Lutescens 16/93-01-8 | 0 | 0 | 100 | 80 | 30 | 100 | 60 | | Lutescens 25/93-01-2 | 5 | 5 | 100 | 90 | 50 | 100 | 100 | | Lutescens 122 | 0 | 0 | 50 | 30 | 50 | 100 | 100 | | Lutescens 1101-12 | 10 | 5 | 30 | 50 | 20 | 80 | 40 | | Fiton 82 | 15 | 10 | 20 | 30 | 10 | 90 | 80 | | Fiton C-54 | 0 | 0 | 0 | 10 | 0 | 30 | 40 | | Ecada 148 | 0 | 0 | 0 | 0 | 0 | 0 | 20 | | Celinnaya | 10 | 5 | 70 | 70 | 20 | 100 | 60 | | | 15 | 10 | 30 | 80 | 10 | 100 | 80 | | Asyl Sapa
Standard early | 0 | 0 | 80 | 70 | 10 | 100 | 100 | | Standard early Standard middle | 0 | 0 | 50 | 70 | 1 | 70 | 80 | | Standard late | 0 | 0 | 80 | 60 | 20 | 100 | 100 | | In memory to Aziyev | 10 | 0 | 50 | 80 | 20 | 100 | 100 | | Terce | 0 | 0 | 50 | 10 | 20 | 100 | 80 | | Astana 2 | 10 | 5 | 50 | 60 | 5 | 100 | 80 | | Omsk35 | 15 | 10 | 70 | 60 | 20 | 90 | 100 | | | 0 | 0 | 70 | 70 | | 100 | | | Saratov29
Tobol | 0 | 0 | 70 | 60 | 20 | 100 | 100 | | 3.0.m(-905-00) 3009.00 | 10 | 5 | 0 | 0 | 1 | 100 | 20 | | Altai reaper
Lutescens 665/1 | 5 | 5 | 30 | 40 | 20 | 70 | 60 | | | 10 | 5 | 0 | | | 100 | | | Lutescens R - 23-18 | | | | 20 | 20 | | 60 | | Lutescens R - 66 B | 0 | 0 | 50 | 60 | 20 | 100 | 80 | | Lutescens K - 78-1 | 0 | 0 | 50 | 60 | 10 | 100 | 80 | | Lutescens 205/03-1 | 15 | 10 | 40 | 0 | 1 | 50 | 1.0 | | Lutescens 220/03-83 | 10 | 5 | 0 | 5 | 0 | 0 | 10 | | Lutescens 555/01-10-1 | 0 | 0 | 25 | 30 | 20 | 100 | 60 | | Siberian 17 | 20 | 10 | 10 | 5 | 5 | 100 | 20 | | Lutescens 1147 | 15 | 10 | 0 | 0 | 1 | 30 | 20 | | Lutescens 126-05 | 0 | 0 | 0 | 20 | 5 | 30 | 20 | | Lutescens 128-05 | 0 | 0 | 0 | 0 | 5 | 50 | 20 | | Sigma | 0 | 0 | 25 | 10 | 20 | 90 | 40 | | Lutescens 7/04-26 | 0 | 0 | 20 | 15 | 20 | 100 | 20 | | Lutescens 141/03-2 | 10 | 5 | 0 | 20 | 1 | 90 | 40 | | Chelyaba early | 0 | 0 | 0 | 40 | 20 | 90 | 40 | | Ural cuckoo | 15 | 10 | 0 | 0 | 0 | 10 | 40 |