PARAMETERS OF EFFICIENCY ESTIMATION
OF NEURAL NETWORKS OF CYBER ATTACKS RECOGNITION
ON NETWORK RESOURCES OF INFORMATION SYSTEMS

Annotation. One of the main obstacles of widespread introduction of the neural network methods and models in the systems of cyber attacks recognition on network resources of information systems is the lack of parameters which are the basis of effectiveness assessment. Also, there are no mechanisms of the effectiveness evaluations of such implementation. In order to find the solution of this problem, it has been analyzed a wide spectrum of modern neural network methods and models, which used in the recognition systems. The list of parameters was found and mechanism of their usage for the evaluation of effectiveness of design and choices of these methods and models in the construction of these detection systems was worked out. The obtained results allow determining the deficiencies of modern neural network detection of cyber attacks and vulnerability of detection tools and identifying the perspective ways of their advancement. There is also defined that one of the main ways of improvements of neural network is the development of the mechanism of a constructing training sets.

Keywords: information safety, identification of cyber attacks, information system, neural network models, neural network method, safety parameter.

Introduction
In modern conditions, the effective functioning of the information safety system is impossible without the use of an intellectualized system for the recognition of cyber attacks (SRC) on the network resources of information systems (RIS) [11, 12, 22]. At the same time, one of the most promising directions of development of such RIS and SRC is the use of models and methods based on the theory of neural networks (NS). These models and methods are used in the contours of SRC recognition and, in accordance with the results of [9, 21], significantly improve the accuracy of recognition. Prospectivity of neural network tools (NNT) of recognition is confirmed by their use in well-proven SRC hardware of Cisco company and and a large number of theoretical and practical works in this direction, which review is presented in [9, 11, 12]. At the same time, the variety of solutions used in modern NNT, the large number of factors that affect their operational characteristics, the inaccessibility of the description of the commercial NNT and SRC significantly complicates the assessment of the effectiveness of their use, which in turn narrows the scope of their application in domestic information safety systems. In this case, among the analyzed works [1-24], only in [12] there was proposed a basic set of parameters and the method for assessing the effectiveness of the NNT estimating the security parameters of Internet-oriented information systems. However, the solutions of [12] have general nature, they are oriented at recognizing not only a wide range of diverse cyber attacks, but also recognizing the vulnerabilities of Internet-oriented information systems, and therefore require adaptation to the domestic conditions for recognizing cyber
attacks on RIS network. In this regard, the aim of this article is to investigate neural networks for recognizing cyber attacks on the network resources of information systems in order to form a set of universal parameters, which values make it possible to quantify the effectiveness of using such tools.

Research of neural network tools for the recognition of cyber attacks on the network resources of information systems

The results [1, 10, 11] indicate that the neural network recognition of cyber attacks on RIS network consists of the evaluation of security parameters (SPs) that are monitored during operation. In this case, the term SP RIS characterizes a physical value that allows evaluating the security of RIS network [12], and the term cyber attacks on RIS network means the realization in cybernetic space of threats to the security of its components (namely, confidentiality, integrity and accessibility) RIS, taking into account their vulnerabilities. The main difference of this kind of cyberattacks is the network mechanism for their implementation. We have to note that in the literature such cyberattacks are often called network attacks. The NNT are intended for their recognition and should be designed to evaluate the SPs, which correspond to the parameters of network connections that are monitored during operation. These prerequisites allowed limiting the list of studies works only by those papers that deal with the use of the NS for detecting network attacks. Let us describe the obtained results.

Methods of simple and semantic classification of network attacks. The methods are developed within the framework of neural network technology for determining network computer attacks using the "Snort" software package described in [25]. The technology provides the use of two neural network methods for determining attacks — simple classification and semantic classification. As the input parameters there are used parameters of network packets of the transport of degree protocol stack TCP / IP. The simple classification method uses a multilayered perceptron (MSP) with 10 input neurons and 2 neurons in the output layer. In order to optimize the number of hidden neurons, the use of so-called "constructive algorithms" is proposed. The mathematical expression for calculating the correction of the weight coefficients of the neurons of the output layer is given

\[\Delta w_{jk}(i) = -\eta(y_n(i) - f(x_i))\varphi'(v_n(i))y_n, \]

where \(\eta \) — speed coefficient of learning, \(\eta \) — neuron number in the output layer, \(i \) — training iteration number, \(v_n \) — information field obtained at the input of the activation function, \(y_n \) — output signal of \(n \) output neuron, \(\varphi' \) — derivative function of activation, \(f(x_i) \) — expected reaction of \(i \) neuron.

We have to note the lack of a detailed description of the process of optimizing the M structure. The CCA method proposes the use of the Kohonen topographic map (TM). The choice of TM is justified by its low resource intensity. In both methods, a technique for processing the input parameters in order to reduce the number of input parameters of the NS is provided.

Neural Network System of Intrusion Detection (NNSID) is described in [24]. The system is oriented to the use of MSP type NS for detecting network attacks. The results of experiments confirming the effectiveness of the system for detecting attacks which signatures are presented in the KDD-99 database are presented. The choice of the NS type is justified from the point of view of maximum computing power. One-criterion optimization of the architecture of MSP was also carried out.

Binary neural network method (BNM) is described in [15]. The method is used to solve the tasks of detecting network attacks. The method is based on a special binary neural network (BNN), which has two important properties. First, the model is adapted to solve problems which input information has a complex, multiply connected, and even fractal structure. Secondly, the method of training the model is a direct computational procedure and does not require the search for a global extremum of a complex nonlinear function, does not impose any fundamental limitations on the dimensionality of the task. Thus, the method considers a choice of the type of the neural network architecture by the criterion of probability in tasks of the type and by the criterion of minimizing the duration of learning. Unfortunately, there are no experimental data in the work, which makes comparative analysis difficult. The method is not intended to optimize the structure of the NS, and does not comprise the application of the procedure for processing the input data.

The method for isolating network attacks from typical network traffic (INA) is described in [13]. The method is used to recognize network attacks. The use of aMSP with 2 hidden layers of neurons is
suggested. The input layer of such an MSP consists of 9 neurons, and the output layer is made up of 1 neuron. It is noted that the choice of MSP with such structure is explained by the requirements of flexibility and functionality. That is, multi-criteria optimization of the structure of NS is used. The need for preliminary processing of the statistics used for the training and test sample is indicated.

The method for detecting DDoS attacks (MDD) is given in [18]. The use of inaccurate NS is proposed. The proposal is based on the prospective of NS nature of this type. The emphasis is on recognizing the SYN Flood type DDoS attack. In order to formalize the knowledge of experts about the DDoS attack, five linguistic variables were created, each of them characterizes one of the components of vectors of the network traffic parameters, and is used to form the input parameters of the NS. These linguistic variables include:

- X_1 - time of receiving data packets,
- X_2 - percentage of packets from different external ip-addresses,
- X_3 - percentage of packets from different ports,
- X_4 - percentage of packages with damaged headings,
- S - confidence level. Predicate rules of the form were developed: if X_1 is «big» → Y is «high». The structure of the classifier is shown in Figure 2.

![Figure 2 - Inaccurate classifier scheme for detecting SYN Flood attacks](image)

In Figure 2, the symbol indicates the inaccurate neuron "OR", the symbol – the inaccurate neuron "AND", and the notation tLittle, tMiddle, tHigh, extraLittle, extraLots, pLittle, pLots, dhLots correspond to the activation functions of inaccurate variables. It is proposed to present inaccurate classifier in the form of NS with direct propagation of the signal, which is learned with the help of a modified algorithm for back propagation of the error. The modification consists of adapting the classical algorithm to the inaccurate "AND" and "OR" neurons. Thus, the main difference between the proposed method of detection is the possibility of using expert knowledge for NS learning.

The method of using a neural network of a hybrid structure of CounterPropagation type (NNHS) is described in [5, 21]. The method is designed to detect network attacks on a Web server. A feature of the CounterPropagation network is the combination of TM with MSP. The input data of the method are parameters of network traffic transmitted over IP, TCP, HTTP, HTTPS, CGI, and SQLNет protocols. The method provides for the preliminary processing of the input parameters of the NS by representing them in the form of graphic images (pythograms), which are used in the cognitive graph. The aim of the preliminary processing is to minimize the dimension of the input data. The graphic representation determined the necessity of using the Kohonen layer in this method. The use of the perceptron layer is justified from the position of computational efficiency. Thus, the method provides multicriteria optimization of the NS type and one-criterion optimization of the parameters of its architecture. Also, the method provides a procedure for searching the optimal training parameters for the NS, which allows us to reduce the amount of the attack detection errors up to 10 times.

The method of constructing the aggregate traffic classifier (CATC) is proposed in [9]. The method is intended for hierarchical classification of computer attacks on information and
telecommunication networks. A special feature of this method is the use of the mathematical method of the main components of the compression of statistical data used as a training sample of NS. The method uses a combination of 22 neural network detectors; each of them is trained to recognize a particular attack type, given in the KDD-99 database. The detector is a three-layer NS with 12 input neurons and 2 output neurons, one of them is responsible for the presence, and the second for the absence of the attack. As a hidden layer, the Kohonen layer was used. We have to note that the justification for the architecture and parameters of the neural network detector is not given. When the detector detects an attack, the output of the first output neuron is 1. In order to prevent a situation where several detectors simultaneously signal their own type of attack, the minimum euclidean distance between the input image (input parameters - \(x_i \)) and the weight coefficients \(w_{i,j} \) of the hidden neurons is transmitted to the second output of each of them:

\[
E_j = \min_i \sqrt{(x_1 - w_{1,j})^2 + \cdots + (x_{12} - w_{12,j})^2}.
\]

Further, an attack which detector has a minimum Euclidean distance is classified. The CATC method also implicitly provides the optimization of the training and functioning of the neural network detector.

Neural network approach to the detection of network attacks (ADNA) on computer systems is given in [16]. The emphasis is on the recognition of attacks, which signatures are presented in the KDD-99 database. According to the data of this database, the number of input parameters is 41. As a criterion for choosing the optimal type of neural network model, it is suggested to use a minimum of the training sample volume. By means of the analysis of literature sources, it is determined that the admissible types of NS include TN, BSP with one hidden layer of neurons and a network of radial basis function (RBF). It is noted that the minimum amount of training sample \(L \) for TM should be 2 times higher than the number of input neurons \(n \), that is \(L \approx W / \varepsilon \). For BSP and RBF, the amount of the training sample is calculated as follows \(L \approx W / \varepsilon \) : where \(W \) is the number of synaptic connections \(\varepsilon \) is the allowable training error. In what follows, an attempt was made in [12] to determine the optimal structure of the BSP. It is stated that the number of hidden neurons determined experimentally is equal to \(m = 10 \). In this case, the number of output neurons is 2. Accordingly, the required volume of the training sample of the TM is \(L = 82 \) examples, and for BSP and RBF at \(\varepsilon = 0.1 \) is \(L = (m(n+3) + 2) / \varepsilon = 4420 \). Therefore, the optimal type of neural network model is TM. We have to note that the correctness of the calculated values raises doubts, because according to the NS theory [17], given the accuracy of training, the number of hidden BSP neurons directly depends on the size of the training sample. Later in [12], the structure of the TM is optimized. The criterion for maximizing the accuracy of training is implicitly used. The procedure for preliminary processing of input parameters is also used.

Adaptive system for the detection of attack (ASDA) is described in [19]. The system is designed to recognize network attacks and is based on the joint work of the TM and MSP performing the tasks of clustering and classification of data. Detection of attacks, which is carried out in several stages, became possible due to the fact that the database of the expert system was updated with information about changes in the behavior of a particular object for a certain period of time. It is proved that the optimization of the architecture will improve the accuracy and efficiency of recognition. As the input data, the parameters of the network traffic using the TCP protocol are used. In order to process the input data, a sliding time window method was used. TM is used for preliminary processing of data arriving at the MSP input in order to compress and increase the information content. A mathematical expression for calculating the neuron detection frequency in position \((i, j)\) as the winner neuron is given:

\[
\beta_{i,j} = f_{i,j} + \sum_{x=3} f_{i-x,j} + f_{i,j-x} + f_{i+x,j} + f_{i,j+x}
\]

where \(f_{i,j} \) - the number when the neuron at position \((i, j)\) was the winner neuron, \(r \) - distance between cluster centers, \(x \) - length of input vector.

In the future, this frequency is used to determine the centers and boundaries of clusters. The structure of MSP is optimized in terms of the volume of controlled resources.
Neural network technology for detection and classification of network attacks (VKMA) is described in [23]. In this technology, the use of a three-layer NS is suggested, which is trained by the method of back propagation of the error. In this case, a separate NS is used to recognize each type of network attacks. As input parameters it is suggested to use the parameters of network traffic on the TCP/IP protocols. As a training sample, it is proposed to use data from the KDD-99 database. The verbal description and fragments of the program code for preparation of the input data from this database to the type of the input parameters of the NS are given. At the same time, one of the training objectives is to reduce the volume of the training sample of the NS. There are no descriptions of approaches on optimizing the architecture and parameters of the neural network model.

The method for recognizing anomalies of network traffic (PANT) is developed in [1]. The method provides the use of the MSP type NS. As input NS data, IP headings internet parameters are used. The choice of the architecture of the NS is based on the statement about the high approximation possibilities of MSP. The MSP consists of three layers of neurons. The number of neurons of the first (input) layer is 18, which is equal to the number of parameters of the headings of the IP datagram. The number of neurons in the output layer is 2. The output of neuron № 1 is responsible for the presence of an anomaly, and the output of neuron № 2 for the safe state of network traffic. Expressions for calculating the number of neurons in a hidden layer are given. Thus, the method provides for optimization of the architecture parameters of the NS. In order to simplify the creation of a representative sample, a method for specifying signatures was developed, which aims to introduce additional artificially created signatures that describe a priori anomalous traffic. Thus, in this method, it is possible to implicitly use expert data on network attacks.

Algorithm of traffic parameters transformation (ATPT) is described in [2]. The algorithm is designed to obtain input data from the network traffic for a neural network system for detecting network attacks. As the input information of the specified algorithm, the parameters of the TCP session are used. Transformation of traffic parameters is used to reduce the number of input parameters of the NS and increase their informative content and is implemented using a mathematical apparatus based on the method of main components. In ATPT, the optimization of the architecture and parameters of the neural network model is not provided. We also note that works [3, 11] have a similar character.

Neural network technology for detecting network attacks (TOMA) on information resources is described in [8, 9, 19]. The technology provides a compression module for input data, which is based on the application of the neural network analogue of the main component method – a recirculating neural network (RNN) with two layers of neurons. The structure of the RNN is shown in Figure 2.

![Figure 2 - The structure of the recirculating neural network](image)

The first layer, consisting of \(k \) neurons, allows us to control the number of information signs (\(\alpha \)), and the second layer of \(n \) neurons allows us to filter data (\(\alpha' \)). The settings of the first layer allow us to obtain a form of representation of the input \(n \)-dimensional object compressed to \(k \) attributes, that is, to determine the \(k \) principal components.
In the method, by means of numerical experiments, the possibility of using TM and MSP to detect network attacks, which signatures are presented in the KDD-99 database is proved.

Neural network system for detecting computer attacks based on the analysis of network traffic (NNSDC) is described in [16].

The development of a method for analyzing input traffic based on a three-layer NS is declared. It is shown that the calculation of the topology of the NSM should be implemented taking into account the Vapnik-Chervonenkis measure of the form:

\[K \times N \leq V C_{dim} \leq N_w \times (1 + \log N_n) \]

where \(N \) – size of the data at the input; \(K \) – number of neurons in the hidden layer; \(N_w \) – total number of network weights; \(N_n \) – total number of network neurons.

The results of training and testing of the projected NS are given, which show the possibility of its successful application for solving the problem of detection of network computer attacks. It has been suggested that the best results can be obtained in computer systems using a limited set of network software, which makes it possible to form the signs of normal behavior for detecting attacks more effectively.

In [16], a **method for detecting intrusions into an information system based on neural networks (MDI)** was proposed. This method is based on a combined application of methods of searching for an attack signature and detecting anomalies in the user's work. In the process of developing the method, an approach to solve the problem of classifying images is proposed, which consists of presenting input data in the form of signatures and assigning them to attack classes or to safe user actions using the NS. Based on the model of safe operation of the user in the IS and the proposed approach to simplifying the task of processing information, the structure of the neural network attack detection system was synthesized. Also, research was carried out to determine the optimal parameters of NS training algorithms, including the choice of methods for the formation of representative training sets, the assessment of the quality of NS functioning, and the search for optimal parameter values.

A **scheme for detecting network attacks based on the combination of neural, immune and neuron-inaccurate classifiers (SDNA)** was proposed in [3]. The main features of the proposed scheme are a multilevel analysis of network traffic, as well as the use of various adaptive in the detection of attacks, including neural network and modules. In order to reduce the number of features used for the analysis, it is suggested to apply the principal component method. Computational experiments on two open data sets using various methods of combining classifiers were performed.

Neural network methodology for assessing the safety parameters of Internet-oriented information systems (NISM) is presented in [12]. Among the analyzed papers, this work is the most fundamental. It comprises the further development of theoretical propositions of constructing the NNT for assessing the SP, which aims at the developed approaches to the recognition of gradual and unexpected cyber attacks, the determination of the optimal type of NSM, the appropriateness of using the NNT, the classification of statistically similar cyber attacks, the application of production rules for the presentation of expert knowledge, parameters of NNT effectiveness assessment. Also, models for the creation and use of the NNT for assessing the SP have been developed, which allow us (through the application of the developed theoretical provisions): to determine the list of assessed SP, to create behavior templates adapted to the complex nature of the SP, and to reduce the resource intensity of the creation of the NSM. On the basis of these models, a number of methods that make it possible to increase the efficiency of the use of the NNT have been developed. So the method of representation of expert knowledge for the NNT for assessing the SP allows us to provide prompt recognition and expand many types of cyberattacks for which there are no statistical data. The method for determining the time characteristics of the use of the NNT for assessing the SP due to the use of the developed analytical dependencies of the determination between the expected and permissible development periods provides the opportunity to determine the appropriateness of using these means. The method of designing a behavior pattern makes it possible to reduce the error in the training of the NSM in 1.5-2 times. The method for determining the effectiveness of developing neural network tools for assessing safety parameters through the application of the proposed parameters for assessing the effectiveness and the formed integral indicator of efficiency allows us to choose the most effective means. The application of the method enabled to determine that the typical
shortcomings of the known NNT are the insufficient validity of the use expediency, the inability to use expert data, and the empirical choice of the type of NSM.

Based on the interconnected use of the developed approaches, models and methods, a comprehensive methodology for the neural network estimation of the SP has been developed, which allows us to significantly expand the NNT functional capabilities and to select the most effective means.

From the position of the aim of the research, the proposed list of parameters characterizing the effectiveness of the NNT is the most interesting in this work. We have to note that the lack of this list is caused from the rather general character of the paper [12], which is aimed at evaluating the SP for recognizing a wide range of cyber attacks and vulnerabilities of Internet-oriented IP. Therefore, taking into account the above limitations, proposed list is largely superfluous at evaluating the NNT for recognizing cyber attacks on RIS network. At the same time, it does not fully take into account the specifics of assessing the effectiveness of the NNT in the recognition of network cyber attacks.

The basic characteristics of the analyzed neural network methods and models are given in Table 1. Analysis of the data in this table indicates that BSP and TM are used as the basic types of neural network models in most of the known neural network systems for recognizing network attacks.

In addition, as a result of the analysis it was established that the efficiency of modern neural network methods and models is improved by providing them with certain capabilities that are characterized by the following parameters: \(P_{\text{ini}} \) - preliminary processing of incoming parameters, \(P_{\text{opt}} \) - optimization of the architecture type, \(P_{\text{optm}} \) - optimization of the training method, \(P_{\text{exp}} \) - the possibility of using expert rules, \(P_{\text{clas}} \) - the possibility of using classical and perspective types of neural network architectures in method, \(P_{\text{exp}} \) - the possibility of a principled assessment of the appropriateness of using the NS for the solution of the task.

Also, the conclusion that the effectiveness of neural network recognition tools depends on the completeness and representativeness of the training sample was made, which is used to train the basic neural network models. This conclusion is formulated on the basis of an analysis of the results of [21], which substantiates the method of using NS to recognize voice signals. Due to this, the use of the \(P_{\text{ori}} \) parameter, which is intended to assess the mechanism of formation of the training sample, which is used in the NNT, is suggested.

The values of the proposed parameters in the first approximation can be estimated by a binary scale of 0 or 1. The parameter is equal to 0 when the corresponding possibility in the NNT is not provided and 1 is in the opposite case. For the analyzed cases, the values of these parameters are given in Table 2. At the same time, \(P_{\text{ori}} = 0 \) for all analyzed methods. That is, in most of the analyzed methods, the procedure for forming the sampling sample has not been implemented. In addition, the use of the proposed criteria enables to determine the integral indicator of the effectiveness of the NNT \((E_{\text{c}}) \) using the following expression:

\[
E_{\text{c}} = \sum_{i=1}^{s} \alpha_i E_i,
\]

where \(\alpha_i \) - weight coefficient of i criterion.

In general, the definition of weight coefficients requires a separate study, and in the basic version we assume that \(\alpha_i = 1 \). Also we have to note that the basic list of parameters can be further extended.

We note that the practical value of the data in Table 2 consists in outlining the shortcomings and prospects for improving modern neural network methods and models. For example, the values of \(P_{\text{ini}} = 0 \) indicate that the shortcomings of the NNSID method include an inadequate optimization of the architecture type of the neural network model. This indicates the possibility of appropriate improvement of these methods. In this case, the value of the parameter \(P_{\text{c}} \) enables to estimate the integral efficiency of the neural network method. Also, as a result of the analysis proved that in modern SRC, classical types of neural network models are mainly used, which are adapted to the conditions of the task to some extent. This allows us to narrow the range of permissible neural network models, which in turn enables to increase the efficiency of determining the neural network model, which is optimal from the point of view of the task. Thus, it becomes possible to increase the efficiency of the establishment of appropriate SRC.
Table 1 - Basic parameters of neural network tools

<table>
<thead>
<tr>
<th>№</th>
<th>Method</th>
<th>NM type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DSP</td>
</tr>
<tr>
<td>1</td>
<td>ATPT</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Simple classification</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>NNSID</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>TDNA</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>RANT</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Semantic classification</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>NNHS</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>CATC</td>
<td>+</td>
</tr>
<tr>
<td>9</td>
<td>ADNA</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>ASDA</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>MDD</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>BNNM</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>NTDCNA</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>MDI</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>NNSDC</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>NNHS</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>SDNA</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>NNMASP</td>
<td>+</td>
</tr>
</tbody>
</table>

Table 2 - The parameters characterizing neural network methods and models

<table>
<thead>
<tr>
<th>№</th>
<th>Method</th>
<th>Parameter</th>
<th>P_{no}</th>
<th>P_{org}</th>
<th>P_{ory}</th>
<th>P_{sur}</th>
<th>P_{nor}</th>
<th>P_{org}</th>
<th>P_{org}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ATPT</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Simple classification,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Semantic classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NNSID</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>TDNA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>RANT</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>INA</td>
<td></td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>INA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>CATC</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>ADNA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>ASDA</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>MDD</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>BNNM</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>NTDCNA</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>MDI</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>NNSDC</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>NNHS</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>SDNA</td>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>NNMASP</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>8</td>
</tr>
</tbody>
</table>

Conclusions

The list of parameters is determined and the mechanism of their use for an assessment of integrated efficiency of development of modern neural network methods of recognition of cyber attacks is formed. This allows us to determine the shortcomings of these methods and models, identify promising directions for their improvement, and increase the effectiveness of the systems created on their basis. In addition, the possibility of limiting the range of permissible neural network architectures that are used in detection systems is shown, which makes it possible to increase the efficiency of the creation of these systems. It has also been determined that one of the most important areas for improving the neural network methods of recognizing cyberattack is the development of the procedure for forming a training sample.
REFERENCES

ПАРАМЕТРЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ НЕЙРОСЕТЕВЫХ СРЕДСТВ РАСПОЗНАВАНИЯ КИБЕРАТАК НА СЕТЕВЫЕ РЕСУРСЫ ИНФОРМАЦИОННЫХ СИСТЕМ

Аннотация. Одним из основных препятствий широкому внедрению нейросетевых методов и моделей в системах распознавания киберата к сетевые ресурсы информационных систем являются отсутствие параметров на основе которых можно оценить их эффективности. Также отсутствуют и механизмы оценки эффективности такого внедрения. Для решения этой проблемы был проанализирован широкий спектр современных нейросетевых методов и моделей, применяемых в системах распознавания. Определен перечень параметров и разработан механизм их использования для оценки эффективности разработки и выбора упомянутых методов и моделей при построении указанных систем распознавания. Полученные результаты позволят определить недостатки современных нейросетевых средств обнаружения киберата и средств обнаружения уязвимостей и определить перспективные пути их совершенствования. Также определено, что одни из основных путей совершенствования нейросетевых средств является разработка механизма построения обучающей выборки.

Ключевые слова: безопасность информации, выявление киберата, информационная система, нейросетевые модели, нейросетевые метод, параметр безопасности.

Введение
В современных условиях эффективное функционирование системы защиты информации невозможно без использования интеллектуализированной системы распознавания киберата (СРК) на сетевые ресурсы информационных систем (РИС) [11, 12, 22]. При этом одним из наиболее перспективных направлений развития таких СРК РИС является применение в них моделей и методов, базирующихся на теории нейронных сетей (НС). Указанные модели и методы используются в контурах распознавания СРК и в соответствии с результатами [9, 21] позволяют значительно повысить точность распознавания. Перспективность нейросетевых средств (НСР) распознавания подтверждается их использованием в хорошо апробированных программно-аппаратных СРК компания Cisco и большим количеством теоретических и практических работ в данном направлении, обзор которых представлен в [9, 11, 12]. Вместе с тем разнообразие решений, применяемых в современных НСР, большое количество факторов, которые влияют на их эксплуатационные характеристики, недостаточность описания коммерческих НСР СРК значительно усложняют оценку эффективности их использования, что в свою очередь сужает сферу их применения в отечественных системах защиты информации. При этом среди проанализированного множества работ [1-24], только в работах [12] предложен базовый набор параметров и базирующийся на них метод оценки эффективности НСР оценки параметров безопасности Интернет-ориентированных информационных систем. Однако решения [12] имеют общую характеристику, ориентированы на распознавания не только широкого спектра разнообразных кибератак, но и распознавания уязвимостей Интернет-ориентированных информационных систем, а следовательно требуют адаптации к отечественным условиям распознавания киберата на сетевые.
ПИС. В связи с этим целью данной статьи является исследование нейросетевых средств распознавания кибератак на сетевые ресурсы информационных систем с целью формирования набора универсальных параметров, значения которых позволяют количественно оценить эффективность использования таких средств.

Исследование нейросетевых средств распознавания кибератак на сетевые ресурсы информационных систем.

Результаты [1, 10, 11] указывают на то, что нейросетевое распознавание кибератак на сетевые РИС сводится к оценке множества параметров безопасности (ПБ), которые контролируются на эксплуатации. При этом термин ПБ РИС характеризует физическую величину, которая позволяет оценить защищенность сетевого РИС [12], а под термином кибератаки на сетевой РИС понимают реализацию в кибернетическом пространстве угроз безопасности его компонентов (а именно конфиденциальности, целостности и доступности) с учетом их взаимосвязей. Основным отличием такого рода кибератак является сетевой механизм их осуществления. Отметим, что в литературе такие кибератаки достаточно часто называют сетевыми атаками. НСР предназначенные для их распознавания должны быть предназначены для оценки ПБ, которые соотносятся с параметрами сетевых соединений, которые контролируются на эксплуатации. Указанные предпосылки позволили ограничить перечень исследованных работ только теми, работами которые посвящены применению НС для распознавания сетевых атак. Опишем полученные результаты.

Методы простой и семантической классификации сетевых атак. Методы разработаны в рамках нейросетевой технологии определения сетевых компьютерных атак с помощью программного комплекса «Snort», описанного в работе [25]. Технология предусматривает использование двух нейросетевых методов определения атак — простой классификации (ПСА) и семантической классификации (ССА). В качестве входных параметров используются параметры сетевых пакетов транспортного уровня стека протоколов ТСР/IP. В методе ПСА использован многослойный персептрон (МСП) с 10 входными нейронами и 2 нейронами в выходном слое. Для оптимизации количества скрытых нейронов предлагается применение так называемых «конструктивных алгоритмов». Приведено математическое выражение для расчета коррекции весовых коэффициентов нейронов выходного слоя

\[\Delta w_{jk}(i) = -\eta(y_n(i) - f(x_i))\varphi'(v_n(i))y_n, \]

где \(\eta \) — коэффициент скорости обучения, \(\eta \) — номер нейрона в выходном слое, \(i \) — номер учебной итерации, \(v_n \) — информационное поле, полученное на входе функции активации, \(y_n \) — выходной сигнал \(n \)-го выходного нейрона, \(\varphi' \) — производная функции активации, \(f(x_i) \) — ожидаемый ответ \(i \)-го нейрона.

Отметим отсутствие детального описания процесса оптимизации структуры М. В методе ССА предлагается использование топографической карты Кохонена (ТК). Выбор ТК обосновывается ее невысокой ресурсоемкостью. В обоих методах предусмотрена методика обработки входных параметров с целью уменьшения количества входных параметров НС.

Нейросетевая система обнаружения вторжений (НСОВ) описана в работе [24]. Система ориентирована на использование НС типа МСП для распознавания сетевых атак. Приведены результаты экспериментов, подтверждающих эффективность системы при распознавании атак, сигнатуры которых представлены в базе KDD-99. Выбор типа НС обоснован с точки зрения максимальной вычислительной мощности. Также проведена однокритериальная оптимизация архитектуры МСП.

Бинарный нейросетевой метод (БНМ) описан в работе [15]. Метод применяется для решения задачи обнаружения сетевых атак. В основе метода лежит специальная бинарная нейронная сеть (БНС), которая имеет два важных свойства. Во-первых, модель приспособлена для решения задач, в которых входная информация имеет сложную, многовыходную и даже фрактальную структуру. Во-вторых, метод обучения модели является прямой вычислительной процедурой и не сводится к поиску глобального экстремума сложной нелинейной функции, не накладывает никаких принципиальных ограничений на размерность задачи. Таким образом в методе предусмотрен выбор типа нейросетевой архитектуры по критерию апробированности в...
задачах типа и по критерию минимизации длительности обучения. К сожалению, в работе
отсутствуют экспериментальные данные, что затрудняет сравнительный анализ. В методе не
препускается проводить оптимизацию структуры НС, также не предусмотрено и применение
процедуры обработки входных данных.

Метод выделения сетевых атак с типичного сетевого графика (ВСА), описан в работе [13].
Метод применяется для распознавания сетевых атак. Предложено применение аМСП с 2
скрытыми слоями нейронов. Входной слой такого МСП состоит из 9 нейронов, а выходной слой -
из 1 нейрона. Отмечено, что выбор МСП с такой структурой объясняется требованиями гибкости и
функциональности. То есть использовано многоуровневое моделирование структуры НС.
Указана необходимость предварительной обработки статистики, используемой для учебной и
tестовой выборки.

Способ обнаружения DDoS-атак (СОД), приведен в работе [18]. Предложено использование
нечетких НС (ННС). Предложено основывается на перспективе НС такого типа. Акцент
ставится на распознавании DDoS-атаки типа SYN Flood. Для формализации знаний экспертов о
DDoS-атаки было создано 5 лингвистических переменных, каждая из которых характеризует одно
из компонент вектора параметров сетевого трафика, используется для формирования входных
параметров НС. К указанным лингвистическим переменным относятся:

\[X_1 \text{ - время получения пакетов, } X_2 \text{ - процент пакетов из различных внешних ip-адресов, } X_3 \text{ - }
\]

\[\text{процент пакетов с разных портов, } X_4 \text{ - процент пакетов с поврежденными заголовками, } S \]

- степень уверенности. Разработаны предиктивные правила вида: Если \[X_1 = \text{«большой»} \rightarrow Y \rightarrow \]

«высокая». Структура классификатора показана на рис. 2.

![Рисунок 2 - Схема нечеткого классификатора для выявления SYN Flood-атак](image)

На рис. 2 символом обозначено нечеткий нейрон «ИЛИ», символом - нечеткий нейрон "И", а
обозначение tLittle, tMiddle, tHigh, extraLittle, extraLots, pLittle, pLots, dlLots соответствуют
функциям активации нечетких переменных. Предложено представить нечеткий классификатор в
виде НС с прямым распространением сигнала, которая учится с помощью модифицированного
алгоритма обратного распространения ошибки. Модификация заключается в приспособлении
классического алгоритма к нечетким нейронам «И» и «ИЛИ». Таким образом, основным отличием
предлагаемого способа обнаружения является возможность применения для обучения НС
экспертных знаний.

Метод использования нейронной сети гибридной структуры типа CounterPropagation
(НСГТ) описан в работах [5, 21]. Метод предназначен для обнаружения сетевых атак на веб-
сервер. Особенностью сети CounterPropagation является комбинация ТК с МСП. Входными
dанными метода являются параметры сетевого трафика, передаваемого по протоколам IP, TCP,
HTTP, HTTPS, CGI, SQL.Net. В методе предусмотрена процедура предварительной обработки
входных параметров НС за счет представления их в виде графических образов (пифограм),
которые используются в когнитивной графике. Целью предварительной обработки является
минимизация размерности входных данных. Графическое представление определило необходимость применения в методе слоя Кохонена. Использование персентричного слоя обосновано с позицией вычислительной эффективности. Таким образом, методом предусмотрено многокритериальная оптимизация типа НС и однокритериальная оптимизация параметров ее архитектуры. Также в методе предусмотрена процедура поиска оптимальных параметров обучения НС, которая позволяет до 10 раз уменьшить величину ошибки распознавания атак.

Метод построения совокупного классификатора трафика (ПСКТ) предложен в работе [9]. Метод предназначен для иерархической классификации компьютерных атак на информационно-телекоммуникационные сети. Особенностью данного метода является использование математического метода главных компонент для сжатия статистических данных, используемых в качестве обучающей выборки НС. В методе использован объединение из 22 нейросетевых детекторов, каждый из которых обучен определенной тип атаки, приведенный в базе данных KDD-99. Детектор представляет собой трехслойную НС с 12 входными нейронами и 2 выходными нейронами, один из которых отвечает за наличие, а второй за отсутствие атаки. В качестве скрытого слоя использован слой Кохонена. Отметим, что обоснование архитектуры и параметров нейросетевого детектора не приведены. При обнаружении детектором атаки выход первого выходного нейрона равен 1. Для предотвращения ситуации, когда несколько детекторов одновременно сигнализируют о собственном тип атаки, на второй выход каждого из них передается минимальная свидетельская расстояние между входным образом (входными параметрами x_i) и весовыми коэффициентами скрытых нейронов ($w_{i,j}$):

$$E_j = \min \sqrt{\left(x_{1} - w_{1,j}\right)^2 + \ldots + \left(x_{12} - w_{12,j}\right)^2}.$$

В дальнейшем классифицируется атака, детектор которой имеет минимальное свидетельство расстояние. В методе ПСКТ также в неявном виде предусмотрено оптимизацию обучения и функционирования нейросетевого детектора.

Нейросетевой подход к выявлению сетевых атак (ПВСА) на компьютерные системы, приведен в работе [16]. Акцент ставится на распознавание атак, сигнатуры которых представлены в базе KDD-99. Согласно данным этой БД количество входных параметров - 41. В качестве критерия выбора оптимального типа нейросетевой модели предлагается использовать минимальный объем обучающей выборки. Путем анализа литературных источников определено, что к допустимым типам НС относятся ТК, БШП с одним скрытым слоем нейронов и сеть радиальной базисной функции (РБФ). Отмечено, что для ТК минимальный объем обучающей выборки (L) должен быть равен 2 раза превышать количество входных нейронов (m), т.e. $L = W / \varepsilon$. Для БШП и РБФ объем обучающей выборки рассчитывается так $L \approx W / \varepsilon$, где W - количество синаптических связей, ε - допустимая ошибка обучения. В дальнейшем в [12] сделаны попытки определить оптимальную структуру БШП. Заявлено, что определенное экспериментальным путем количество скрытых нейронов равно $m = 10$. При этом количество выходных нейронов равно 2. Соответственно, необходимый объем обучающей выборки ТК составляет $L = 82$ примеров, а для БШП и РБФ при $\varepsilon = 0.1$, $L = (m(n + 3) + 2) / \varepsilon = 4420$. Поэтому оптимальным типом нейросетевой модели выбран ТК. Отметим, что правильность рассчитанных величин вызывает сомнения, ведь согласно теории НС [17] при заданной точности обучения, количество скрытых нейронов БШП напрямую зависит от величины обучающей выборки. В дальнейшем в [12] проводится оптимизация структуры ТК. Неявно использован критерий максимизации точности обучения. Также использована процедура предварительной обработки входных параметров.

Адаптивная система обнаружения атак (АСОА) описана в работе [19]. Система предназначена для распознавания сетевых атак и базируется на совместной работе ТК и МСП, выполняющих задачи кластеризации и классификации данных. Обнаружение атак, которое проводится в несколько этапов, стало возможным благодаря тому, что в базу данных экспертной системы вошла информация об изменениях в поведении конкретного объекта в течение некоторого отрезка времени. Доказывается, что оптимизация архитектуры позволит повысить
точность и оперативность распознавания. В качестве входных данных использованы параметры сетевого трафика по протоколу TCP. Для обработки входных данных использован метод скользящего временного окна. ТК использована для предварительной обработки данных, поступающих на вход МСП с целью их сжатия и повышения информативности. Приведено математическое выражение для расчета частоты определения нейрона в позиции (i, j) в качестве нейрона-победителя:

\[\beta_{i,j} = f_{i,j} + \sum_{x=1}^{r} \left(\frac{f_{i-x,j} + f_{i,j-x} + f_{i+x,j} + f_{i,j+x}}{1 + x} \right) \]

где \(f_{i,j} \) - количество раз когда нейрон в позиции (i, j) был нейроном-победителем, \(r \) - расстояние между центрами кластеров, \(x \) - длина входного вектора.

В дальнейшем эта частота используется для определения центров и границ кластеров. Структура МСП оптимизирована с точки зрения объема контролируемых ресурсов.

Нейросетевая технология обнаружения и классификации сетевых атак (ВКМА) описана в работе [23]. В технологии предусмотрено использование трехслойной НС, которая обучается методом обратного распространения ошибки. При этом для распознавания каждого вида сетевой атаки применяется отдельная НС. В качестве входных параметров предлагается использование параметров сетевого трафика по протоколам TCP/IP. В качестве обучающей выборки предлагается использовать данные из базы данных KDD-99. Приведены словесные описание и фрагменты программного кода для подготовки входных данных из этой базы данных к виду входных параметров НС. При этом одной из целей подготовки является уменьшение объема обучающей выборки. Описания подходов к оптимизации архитектуры и параметров нейросетевой модели отсутствуют.

Метод распознавания аномалий сетевого трафика (РАМТ) разработан в работе [1]. Методом предусмотрено использование НС типа МСП. В качестве входных данных НС используются параметры заголовков IP-дейтаграмм. Выбор архитектуры НС базируется на утверждении о высоких аппроксимационных возможностях МСП. МСП состоит из трех слоев нейронов. Количество нейронов первого (входного) слоя - 18, что совпадает с числом параметров заголовка IP-дейтаграммы. Количество нейронов в выходном слое 2. Выход нейрона №1 отвечает за наличие аномалии, а выход нейрона №2 - за безопасное состояние сетевого трафика. Приведены выражения для расчета количества нейронов в скрытом слое. Таким образом, метод предусматривает оптимизацию архитектуры НС. Для упрощения создания репрезентативной выборки разработан метод уточняющего сигнатуру, суть которого заключается во введении дополнительных искусственно созданных сигнатурах, описывающих априори аномальный трафик. Таким образом, в методе в неявном виде возможно использовать экспертные данные о сетевых атак.

Алгоритм преобразования параметров трафика (АППТ) описан в работе [2]. Алгоритм предназначен для получения из сетевого трафика входных данных для нейросетевой системы обнаружения сетевых атак. В качестве входной информации указанного алгоритма используются параметры TCP-ссессии. Преобразование параметров трафика применяется с целью уменьшения количества входных параметров НС и увеличения их информативности и реализуется с помощью математического аппарата, основанный на методе главных компонент. В АППТ оптимизация архитектуры и параметров нейросетевой модели не предусмотра. Также отмечаем, что работы [3, 11] имеют аналогичный характер.

Нейросетевая технология обнаружения сетевых атак (ТОМА) на информационные ресурсы, описана в [8, 9, 19]. В технологии предусмотрен модуль сжатия входных данных, который базируется на применении нейросетевого анализа метода главных компонент - рекиркуляционной нейронной сети (РНМ) с двумя слоями нейронов. Структура РНМ показана на рис. 2.
Первый слой, состоящий из k нейронов, позволяет управлять количеством информационных признаков (x), а второй слой из n нейронов позволяет проводить фильтрацию данных (x'). Настройки первого слоя позволяют получить сжатую до k признаков форму представления входного p-мерного объекта, то есть определить k главных компонент для x'.

В методе путем численных экспериментов доказана возможность использования ТК и МСП для обнаружения сетевых атак, сигнатуры которых представлены в базе данных KDD-99.

Нейросетевая система обнаружения компьютерных атак на основе анализа сетевого трафика (HCOK) описана в работе [16].

Задекларирована разработка метода анализа входящего трафика на основе трехслойной НС. Показано, что расчет топологии НСМ должен быть реализован с учетом меры Вапника-Червонекиса вида:

$$K \times N \leq VC_{dim} \leq N_w \times (1 + \lg N_n)$$

где N – размерность данных на входе; K – количество нейронов в скрытом слое; N_w – общее количество весов сети; N_n – общее количество нейронов сети.

Приведены результаты обучения и тестирования спроектированной НС, которые показывают возможность её успешного применения для решения задачи обнаружения сетевых компьютерных атак. Выдвинуто предположение, что наилучшие результаты могут быть получены в вычислительных системах, использующих ограниченный набор сетевого программного обеспечения, что позволяет более эффективно формировать признаки нормального поведения для обнаружения атак.

В работе [16] предложен метод обнаружения вторжений в информационную систему на основе нейронных сетей (MOB). Указанный метод базируется на комбинированном применении методов поиска сигнатуры атаки и обнаружения аномалий в работе пользователя. В процессе разработки метода предложен подход к решению задачи классификации образов, заключающийся в представлении входных данных в виде сигнатура и отнесения их с использованием НС к классам атаки либо безопасным действиям пользователя. На основе модели безопасной работы пользователя в ИС и предложенного подхода к упрощению задачи обработки информации, синтезирована структура нейросетевой системы обнаружения атак. Также в работе проведены исследования по определению оптимальных параметров алгоритмов обучения НС, включающие в себя выбор методов формирования репрезентативных обучающих множеств, оценку качества функционирования НС, а также поиск оптимальных значений параметров.

В работе [3] предложена схема обнаружения сетевых атак на основе комплексирования нейронных, иммунных и нейронеченных классификаторов (COCA). Основными особенностями предлагаемой схемы является многоуровневый анализ сетевого трафика, а также...
использование различных адаптивных, в том числе и нейросетевых, модулей в процессе обнаружения атак. Для умениения числа используемых для анализа признаков предложено применять метод главных компонент. Проведены вычислительные эксперименты на двух открытых наборах данных с использованием различных способов комбинирования классификаторов.

Нейросетевая методология оценки параметров безопасности Интернет-ориентированных информационных систем (НМОИ), представлена в работе [12]. Среди проанализированных данного рода работы является наиболее фундаментальной. В ней получили дальнейшее развитие теоретические положения построения НМОИ оценки ПБ, которые заключаются в разработанных подходах к распознаванию постепенных и неожиданных кибератак, определении оптимального вида НСМ, целесообразности применения НСМ, классификации статистически подобных кибератак, применении прогнозирования правил для представления экспертных знаний, параметрах оценки эффективности НСМ. Также разработаны модели создания и использования НСМ оценки ПБ, которые за счет применения разработанных теоретических положений позволяют: определить перечень оцениваемых ПБ, создавать шаблоны поведения, адаптированные к сложному характеру ПБ, а также уменьшить ресурсоемкость создания НСМ. На основе указанных моделей разработан ряд методов, позволяющих повысить эффективность использования НСМ. Так, метод представления экспертных знаний для НСМ оценки ПБ позволяет обеспечить оперативность распознавания и расширить множество типов кибератак, для которых отсутствуют статистические данные. Метод определения временных характеристик использования НСМ оценки ПБ благодаря использованию разработанных аналитических зависимостей определения между ожидаемыми и допустимыми сроками разработки обеспечивает возможность определения целесообразности применения указанных средств. Метод проектирования шаблона поведения позволяет в 1,5–2 раз уменьшить потребность обучения НСМ. Метод определения эффективности разработки нейросетевых средств оценки параметров безопасности, за счет применения предложенных параметров оценки эффективности и сформированного интегрального показателя эффективности позволяет выбрать наиболее эффективное средство. Применение метода позволяет определить, что типичными недостатками известных НСМ является недостаточная обоснованность целесообразности использования, невозможность использования экспертных данных и эмпирический выбор вида НСМ.

На основе взаимосвязанного использования разработанных подходов, моделей и методов разработана комплексная методология нейросетевой оценки ПБ, которая позволяет значительно расширить функциональные возможности НСМ и выбрать из них наиболее эффективное.

С позиции сформулированной цели исследования наибольший интерес в этой работе представляет предложенный перечень параметров, характеризующих эффективность НСМ. Отметим, что недостаток этого перечня вытекает из достаточного общего характера работы [12], которая направлена на оценку ПБ для распознавания широкого круга кибератак и уязвимостей Интернет-ориентированных ИС. Поэтому, с учетом указанных ранее ограничений, при оценке НСМ распознавания кибератак на сетевые РИС, предложенный перечень является во многом избыточным. В то же время в нем недостаточно полно учтены особенности оценки эффективности НСМ при распознавании сетевых кибератак.

Базовые характеристики проанализированных нейросетевых методов и моделей приведены в табл. 1. Анализ данных этой таблицы указывает на то, что в большинстве известных нейросетевых систем предназначенны для распознавания сетевых атак в качестве базовых типов нейросетевых моделей используются БШП и ТК.

Кроме того, в результате проведенного анализа установлено, что повышение эффективности современных нейросетевых методов и моделей идет путем обеспечения в них определенных возможностей, которые характеризуются с помощью следующих параметров: P_{пр} - предварительная обработка входящих параметров, P_{отн} - оптимизация типа архитектуры, P_{опт} - оптимизация параметров архитектуры, P_{обн} - оптимизация метода обучения, P_{вкл} - возможность использования экспертных правил, P_{исп} - возможность применения в методе классических и перспективных типов нейросетевых архитектур, P_{пр} - возможность принципиальной оценки целесообразности применения НС для решения поставленной задачи.
Также сделан вывод о том, что эффективность нейросетевых средств распознавания в значительной степени зависит от полноты и представительности обучающей выборки, которая применяется для обучения нейросетевых моделей, заложенных в их основе. Данный вывод сформулирован на основании анализа результатов работы [21] в которой обоснован метод применения НС для распознавания голосовых сигналов. За счет этого, предложено использование параметра \(P_{\text{вн}} \), который предназначен для оценки механизма формирования обучающей выборки, который применяется в НСР.

Величины предложенных параметров в первом приближении можно оценить по бинарной шкале 0 или 1. Параметр равен 0, когда соответствующая возможность в НСР не обеспечивается и 1 в противоположном случае. Для проанализированных случаев величины указанных параметров приведены в табл. 2. При этом для всех проанализированных методов \(P_{\text{вн}} = 0 \). То есть в большинстве из проанализированных методов не реализована процедура формирования обучающей выборки. Кроме того, использование предложенных критериев позволяет определить интегральный показатель эффективности НСР (\(E_{\text{вн}} \)) с помощью следующего выражения:

\[
E_{\text{вн}} = \sum_{i=1}^{8} \alpha_i E_i,
\]

где \(\alpha_i \) — весовой коэффициент i-го критерия.

В общем случае определение весовых коэффициентов требует отдельного исследования, а в базовом варианте предположим, что \(\alpha_i = 1 \). Также отметим, что базовый перечень параметров может быть в дальнейшем расширен.

Таблица 1 - Базовые характеристики нейросетевых средств

<table>
<thead>
<tr>
<th>№</th>
<th>Метод</th>
<th>Тип НМ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>АППП</td>
<td>БШП, КН, ТК, НМД, НМЕ</td>
</tr>
<tr>
<td>2</td>
<td>НСА</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>НСOB</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>ТОМА</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>РЯТГ</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>ССА</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>НСТГ</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>НСКГ</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>ПВСА</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>АСОА</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>СОД</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>БНМ</td>
<td>+</td>
</tr>
<tr>
<td>13</td>
<td>ВКМА</td>
<td>-</td>
</tr>
<tr>
<td>14</td>
<td>МОВ</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>НСОК</td>
<td>+</td>
</tr>
<tr>
<td>16</td>
<td>НСТГ</td>
<td>+</td>
</tr>
<tr>
<td>17</td>
<td>СОСА</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>НМОПБ</td>
<td>+</td>
</tr>
</tbody>
</table>

Отметим, что практическая ценность данных табл. 2 состоит в обрисовке недостатков и перспектив совершенствования современных нейросетевых методов и моделей. Например, величины \(P_{\text{вн}} = 0 \) свидетельствуют о том, что к недостаткам метода НСOB можно отнести недостаточную оптимизацию вида архитектуры нейросетевой модели. Это свидетельствует о возможности соответствующего совершенствования указанных методов. При этом величина параметра \(P \) позволяет оценить интегральную эффективность нейросетевого метода. Также в результате проведенного анализа доказано, что в современных СРК в основном используются классические типы нейросетевых моделей, которые в той или иной степени адаптированы к...
условиям поставленной задачи. Это позволяет снизить крут допустимых нейросетевых моделей, в свою очередь позволяет повысить оперативность определения нейросетевой модели, оптимальной с точки зрения поставленной задачи. Таким образом появляется возможность повышения оперативность создания соответствующих СРК.

Таблица 2 - Величина параметров, характеризующих нейросетевые методы и модели

<table>
<thead>
<tr>
<th>№</th>
<th>Метод</th>
<th>Параметр</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>АЛПТ</td>
<td>P_{po}</td>
</tr>
<tr>
<td>2</td>
<td>ЛСА, ССА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>3</td>
<td>НСОВ</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>4</td>
<td>ТОМА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>5</td>
<td>РАМТ</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>6</td>
<td>ВСА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>7</td>
<td>ВСА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>8</td>
<td>ПСКТ</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>9</td>
<td>ПВСА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>10</td>
<td>АСОА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>11</td>
<td>СОД</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>12</td>
<td>БНМ</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>13</td>
<td>ВКМА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>15</td>
<td>МОВ</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>16</td>
<td>НСОК</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>17</td>
<td>НСГС</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>18</td>
<td>СОСА</td>
<td>$P_{по}$</td>
</tr>
<tr>
<td>19</td>
<td>НМОПБ</td>
<td>$P_{по}$</td>
</tr>
</tbody>
</table>

Выводы

Определен перечень параметров и сформирован механизм их использования для оценки интегральной эффективности разработки современных нейросетевых методов распознавания кибератак. Это позволяет определить недостатки указанных методов и моделей, определить перспективные направления их совершенствования, позволяет повысить эффективность созданных на их базе систем. Кроме того, показана возможность ограничения крота допустимых нейросетевых архитектур, которые используются в системах обнаружения, что позволяет повысить оперативность создания указанных систем. Также показано, что одним из наиболее важных направлений совершенствования нейросетевых методов распознавания кибератак является разработка процедур формирования обучающей выборки.

ЛИТЕРАТУРА

көрсетілген әдістер мен модельдерді таңдау және әңдеу тәнімділігін бағалауға арналған параметрлер тізімі анықтады және қолдану механизмдері оңдалды. Алынған көрсетілісер қазіргі заманауи нейрорежелік кибершабуылдарды табу құрылдының нұсқаулығын анықтауы әрі оларды және арқылы қолданылған келесі жолдарды табуға мұмкіндік береді. Сондықтан бірін нейрорежелік құрылды арі қаріғі және арқылы қолданылың бірі өкіл құрылымға тандылуына және механизмдерін әндеге болып табылмайдығы анықталған.

Тірек сөзлер: акпараттар қуанысқа, кибершабуылдарды табу, акпараттық жұмыс, нейрорежелік моделдер, нейрорежелік әдістер, қуанысқа параметрлер.

УДК 004.056.5

Б.Б. Ахметов 1, А.Г. Корченко 2, И.А. Терейковский 2, Ж.М. Алибекова 3, И.М. Бапиев 3

1-Международный Казахско-Турецкий университет имени Яссауи, Казахстан, Туркестан;
2-Національний авіаційний університет, Україна, Київ; 3-Казахский Национальный Исследовательский Технический Университет имени К.И.Сатпаева, Казахстан, Алматы

ПАРАМЕТРЫ ОЦЕНКИ ЭФФЕКТИВНОСТИ НЕЙРОСЕТЕВЫХ СРЕДСТВ РАСПОЗНАВАНИЯ КИБЕРБАТАК НА СЕТЕВЫЕ РЕСУРСЫ ИНФОРМАЦИОННЫХ СИСТЕМ

Аннотация. Одним из основных препятствий широкому внедрению нейросетевых методов и моделей в системах распознавания кибератак на сетевые ресурсы информационных систем является отсутствие параметров на основе которых можно оценить их эффективности. Также отсутствуют и механизмы оценки эффективности такого внедрения. Для решения этой проблемы был проанализирован широкий спектр современных нейросетевых методов и моделей, применяемых в системах распознавания. Определен перечень параметров и разработана методика их использования для оценки эффективности разработки и выбора указанных методов и моделей при построении указанных систем распознавания. Полученные результаты позволяют определить недостатки современных нейросетевых средств обнаружения кибератак и средств обнаружения уязвимостей и определить перспективные пути их совершенствования. Также предложено, что инт из основных путей совершенствования нейросетевых средств является разработка механизма построения обучающей выборки

Ключевые слова: безопасность информации, выявление кибератак, информационная система, нейросетевые модели, нейросетевые метод, параметр безопасности.

Сведения об авторах:
Ахметов Берик Бахатжанович - Международный Казахско-Турецкий университет имени Яссауи, Казахстан, Туркестан;
Корченко Александр Григорьевич - Національний авіаційний університет, Україна, Київ;
Терейковский Игорь Анатольевич - Національний авіаційний університет, Україна, Київ;
Алибекова Жибек Мейрамбековна - Казахский Национальный Исследовательский Технический Университет имени К.И.Сатпаева, Алматы;
Бапиев Идрис Мәләнович - Казахский Национальный Исследовательский Технический Университет имени К.И.Сатпаева, Алма