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NONLINEAR HOOKE LAW IN THE THEORY OF ELASTICITY
OF INHOMOGENEOUS AND ANISOTROPIC BODIES

Abstract. Directly from the physical connection with the nonlinear Hooke law, the components of the stress
tensor of a rigid deformable body and new nonlinear equations of the theory of elasticity with an asymmetric stress
tensor are derived, as a special case we obtain equations with the linear Hooke's law. The Lame hypothesis and
Lame's equations do not have a physical connection with Hooke's law, this is their falsehood. Lame took as a basis
the approximate formula of the incomplete differential and suggested in his hypothesis the proportionality of the
stress tensor components to the symmetrical half of the given incomplete differential of displacement, and the
antisymmetric half of the differential is discarded, which is the result of the false symmetry of the Lame stress
tensor. The new nonlinear equations are approximated by an explicit scheme, with the use of which the elastic state
of a flat bar is numerically calculated with the normal and tangential stresses acting on the upper face. The same
scheme is applied to the Lame equations. The obtained patterns of displacements distribution clearly demonstrate the
difference in the solutions of the comparable systems of elasticity equations, as well as the discrepancy between the
solution of the Lame equations for a given state of the deformed body. The falsity of Lame's equations is confirmed
theoretically and physically.
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1. Tangential stresses according to the generalized Hooke's law

Hooke's law is an assertion according to which the deformation arising

in an e¢lastic body, is proportional to the applied force. It was discovered in 1660 by the English
scientist Robert Hooke.

It should be kept in mind that Hooke's law is satisfied only for small deformations. If the
proportionality limit is exceeded, the relationship between stresses and strains becomes nonlinear. For
many media, Hooke's law does not apply even for small deformations. The derivation of dynamic
cquations with an asymmetric stress tensor according to Hooke's linear law is given in [1]: F =ku, k>0,
F, =ui,F, =vj, F,=wk, u=ui+vj+wk— vector of displacement, where F=F, +F,+F,— extemal
force that causes displacement.

In inhomogeneous media composed of bodies with various elastic properties or in anisotropic bodies
whose properties depend on direction, Hooke's law can be nonlinear

F=ku™i+k v™j+k w™k, k, >0k, >0k, >0 (1.1
For exponents of 1 and k =k =k =k. (1.1) becomes Hooke's linear law for an isotropic

medium, hence the exponents must be odd numbers [2], which will be confirmed below by the properties
of hyperbolic equations of anguish. Suppose that on the plane v force is associated with the movement
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under the generalized law F, = k u ™+ similarly force g = | y7vj onthe surface y =y + 5y,

oy >0.
The increments of forces and displacements between layers are equal:

— —T u™; mys My ey oMy my
oF=F, -K =k u"i—k u*i=k ou™i, ou™ =u* —u* >0.
, in this case the force increment is directed along the x axis: SF ™11
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Linear density is introduced f = §F /5y, SF = §yf - By definition, the average tangent stress

oF . . .
vector P yxav = — parallel and equally directed with a force that causes this voltage Py, ™ oF,
Z

Poo TTF.

By the introduction of the proportionality coefficient, the following bonds are formed:

f = k'pyxav’ k'>o> 5yf = k'pyxav5Y> pyxav TT i’
k'p . 0y=k, Su™i

This expression is multiplied scalar by the unit vector i

(K'py O y,i)=(k 601, i)

As result

(K'P 3 SV [Py | O [i] c0S0° =KD, Sy, (k,Su™ii) =k, Su™

. k, ou™
Equalities k'pyxav§ y=k, ou", Py :E Sy in the limit give a tangential stress
_k su™ o™ k,
pyxzhm— = U , ,uuz—'>0
a0k Sy dy K
Tangential stresses in other directions are obtained analogously:
B = avmvP = almlp _ﬂwawmwp _ﬂwawmwp _ﬂvavmv
Xy Il’l\l 8}( SI°7X % aZ 21Xz 8}( 2 yz @, 2 Zy aZ

The asymmetric shearing stress formulas are derived for causing stretching of the body of an external

force F=F, +F, +F, -

— ) ——
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The elastic force in the deformed body according to Newton's third law is equal to the external force
with a minus sign F,=-F. Consequently, the lincar Hooke law for elastic forces will have the form

F, = -ku,F, = —kui—kvj—kwk. A similar representation for Hooke's nonlinear law
F,=-ku™i-k v"j-k, w"k
Suppose that on the plane y1 the force is connected with the displacement along the nonlinear law
F,., = k,ui similarly acts force F,,; = k u3*i onsurface y, =y, +9y, dy>0.
The increments of forces and displacements between layers are equal:
oF=E, —-F =k uri+k u™i=-k ou™i,
m, _.om, _m,
ou™ =uy* —u™ >0.
Let |F2| >|F1 |, in this case, the force increment is directed against the x axis: SF T i Linear

density is introduced f = SF/ 8y, 6F = Syf -
oF

By definition, the average tangent stress vector Pyxar =5_,50- =0X0z parallel and equally

directed with a force that causes this voltage P, T 6F, | ™.
The input of the proportionality coefficient formed a bond:
_ ! ! _ ! L] [} o m, s
f=k'p,...k>0, 5yf =k'p .0y, P, TV i, kp, . dy=k Su™i

yxav ?

This expression is multiplied scalar by the unit vector I
] oN_ m,e s
(k pyxaV5y7l)_-(ku5u 17 l)
As aresult

(K'Y =K [P, Sy, «(k Su™i,i)= —k Su™

oy |1‘ cos1807=-k'p

yxav

Equalities
k, ou™
1 _ m, —_u
kpyxavé‘y - kué‘u > pyxav - K §y
in the limit give a tangential stress
T L L
Ptk oy ey T K
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Similarly, tangential stresses are obtained in other directions:

p _ﬂvavmv P _z%aumu p _luwéwmw p _luwéwmw P _ﬂvavmv
Xy 8}( YI7x aZ Iz a}( 2 VZ @, 2 zy aZ
In this way, the stress formulas for external forces coincide with formulas of the action of elastic
forces, therefore further conclusions are made only for external forces.

2. Relation of Normal Stresses to Hooke's Law
[¢]
A similar argument establishes the formula of the component Py normal voltage
p,. =Adivu i+p;_ .
Let the external forces be equal: F; = k u""1 on surface X; and F, =k uj"i on surface
X, =X, +0X%,6x > 0.
The increments of forces and displacements between layers are equal:
m, & m, s __ m, s m, __ mu_ m,
oF=F,-F =k u,"i-k ui=k,Ju™i, Su™ =u* —u™ >0.
oF

By definition, the average stress vector p° :6_750- =0YOz parallel and equally directed
(o)

with a force that causes this voltage OF ™i, |F2| > |F1 | .

Through the linear density g_— ﬂ SF=5xf. f= k"po equalitics SF =k" 5Xp0
5X 2 2 Xxav xxav?

" 0 _ my e
k §prxav - kué‘u L.
This expression is multiplied scalar by the unit vector i :
" 0 o\ mys s
(k"oxp,....1) =k, ou™i,i)
. 5 .
Vectors are parallel in structure p° o ™i
Therefore, they occur in scalar products

(K XL 1) =K' XD |i]-c0s0” =K'xpl,. (K, Su™ii)=k,Su™.

k, ou™

. " 0 _ m, 0 _u
The resultis K é'prxav —kué‘u ,whence p____ o .
In the limit, the formula for the component of the normal stress

oy koA Kk,
P e T o A
The same reasonings also show the components of normal stresses in other direc
tions:
T .
0 __ £ % — — — — — —
Pi =i 8}2 , M :F,1—1,2,3, U, =W, =V,U; = WX, =XX, SY,X; =Z
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