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MODIFICATION OF THE QUASILINEAR CONTROL SYSTEM
OF BIOMEDICINE

Abstract. The stability of the respiratory chemostat on a finite time interval was studied and the task of stabi-
lizing the biomedical system of the respiratory chemostat for linear and quasilinear control systems was solved. The
study of such regulatory processes in the body plays an important role in the development of technical life support
systems, and this applies not only to the voltage regulating system of the of carbon dioxide and oxygen (the "respi-
ratory chemostat" system), but also to a number of other vital systems. First of all, this refers to the "cardiovascular
chemostat" system, which, as a biological self-regulation system, has the task of washing the tissue reservoir with
fresh blood at such a rate as to maintain the voltage of carbon dioxide and oxygen in tissues at normal or near levels.
This is a complex hydrodynamic system of biological self-regulation, the numerous parameters of which are under
continuous influence of various kinds of control signals, which in turn depend on external conditions relative to the
organism and perturbations. The regulating regime of this system is continuously subjected to sharply and suddenly
changing external influences, which have an extreme character.
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The problem of the stability of the medical and biological system is one of the main problems of
system analysis, mathematical ecology and biomedicine. The task of synthesizing vector control from a
given class for a managed medical-biological system and population dynamics of a community with self-
limiting by mathematical models is represented in the form of quasilinear equations. The models of
biomedicine are considered and the quasi-linear control system of the respiratory chemostat on a finite
time interval is investigated.

Changing FCIO2 , we act on an isolated controlled system, it behaves like a simple linear system with
constant coefficients. Concentration of CO, (FCIOZ) functions as a direct driving force. When the respira-

tory center affects the controlled system, this effect is manifested through ventilation VA‘ When consi-
dering the behavior of the chemostat in the steady state, we assumed for convenience that the input signals
of the control system are determined by the levels of pCO,,[H"] and pO, in arterial blood [1].

Receptors are really located on the path of arterial blood, but proceed only from the fact that in each
particular considered steady situation the values of these parameters are closely related to their effective
values in those places where the real receptors are located.

Let us consider the time course of pulmonary ventilation and changes of pCO, in arterial blood with
a sudden change in the concentration of carbon dioxide in the inspired air.

To simplify the analysis, we introduce a number of additional assumptions: 1) the lungs are a
reservoir of constant volume vented by a continuous gas stream with a dead space equal to zero, and with
a uniform composition; 2) the respiratory coefficient (RQ) at each moment of time is equal to one;
3) transport delays in the transfer of blood are negligible; 4) the respiratory center and other tissues are a
homogencous reservoir, washed by a constant flow of blood; 5) arterial blood, venous blood and "tissues"
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are characterized by the same linearized absorption curve CO,; 6) the partial pressures CO, in the exhaled
air and in the alveolar air and the tension CO, in the arterial blood are always equal to each other, as well
as the stresses CO, in the "tissues" and in the venous blood; 7) the control system is a simple inertial-free
(that is, does not contain dynamic elements) proportional regulator.

To obtain equations describing the dynamic behavior of the biomedical system, we use the same
general principles of equilibrium and continuity, on which Newton's Laws of motion and Kirchhoff's laws
for electric circuits are based. We start with the pulmonary or alveolar reservoir and write down the
"continuity equation for carbon dioxide", which states that the rate of change in concentration of CO; in
the alveolar gas @, is equal to the quotient of dividing the difference between the rates of intake and
washing out of carbon dioxide by the volume of the reservoir K, [1]:

. 1 .
0,= _[VAFC{OZ +4; -4, - q,] (eY)
K A
Carbon dioxide enters the lungs with inhaled gas at a rate equal to the product of pulmonary

ventilation by the concentration of FCIOz in the inspired air, and with venous blood at the rate ¢;, and

leaves the lungs with exhaled air at the rate ¢, and with arterial blood at the rate ¢,. Next, we will write
down another equation of continuity for the tissue reservoir: the rate of change in the concentration of
carbon dioxide in the tissues (9 ) is equal to the sum of the rates of formation of CO, during the exchange
(MR) of CO, with arterial blood flow (g,) and leaching of CO, with venous blood (g;) divided by the
volume of the tissue reservoir Kr:

6, =—IMR+q,~q,] ®

KT

Let us write down three equilibrium equations.

The first of them reflects the equality of concentrations of carbon dioxide in the alveolar and exhaled
air:
9,
s
The second equation describes the equilibrium of concentrations of CO; in the alveolar air and in the
arterial blood, taking into account the linearized CO, absorption curve:

L _pa(0,)+ A4, 4)
0 (0,)+ 4,

where O minute volume of the heart, B - atmosphere pressure, Ag and A4; - respectively, the slope of the
linear absorption curve and the ordinate of the point of its intersection with the ordinate axis.

The third equation expresses the equality of carbon dioxide concentrations in tissues and venous
blood:

_%
QT A )
Q

To study the behavior of an isolated controlled system, it is necessary to solve this system of
equations. There are different ways for this, but in any case, we should, first of all, choose which of the

five dependent variables is considered the output (or outputs) of the system and which of the nine
independent variables (VA,FL{O2 MRK LK ,0,B, Ay, A) is considered to be the input (or inputs) of the

system. We choose the variables 6, and 6, as the outputs of the system, and as the input - FCIO2 ).
Thus, we assume that the variables VA,MR,K . K;,0,B,4; and A, do not change with time. Combine

the five obtained basic equations so as to get a differential equation with respect to one of the dependent
variables, @, or 8,. So, if we solve equation (3) relative to ¢, (4) - relative to ¢, and equation (5) —

relative to ¢ .
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Substituting these values into equations (1) and (2), we obtain

[V ( co, ‘9,4) + Q(‘gr - BASQA - 147)] (O
and
. 1
0,= K_[MR —0(6; —BAH, - 4)]. ()
A
Solving equation (7) with respect to 8, we obtain
1 .
0,= QTAS(KT'9T —MR - QA4+ 06;)]. ®)
The differentiation of (8) gives
9
A QBA Ti ( )
Substituting (8) and (9) into (6), we obtain the required equation relative to 6,
K K, K, K,BA;, K, BAMR
LG, +| A+ LS =110 +0, = BAF, () + +@+A (10)
ov, Ve Vy Y, 0

Having obtained the equation with respect to €., we can find &, in several ways. From equation (8),
find the expression for the concentration &, substituting in (8) the expressions for &, and éT . But there
is another method of determination €, analogous to the method used to derive equation (10) with respect
to @, . It consists in the fact that equation (6) is solved relatively to &, the result obtained is differentiated

(in this case, an expression for ér is obtained) and the expressions for 6, and QT in equation (7) are
substituted. The equation derived in this way has the following form [5]:

K K, K, K,BA; K MR
o O {V 4L > Q }6 +0,; FCIO ®+ QT Fc’o ) +— (11)
A

R
A
Equations (10) and (11) describe the behavior of an isolated controlled system under the assumption

A

that the driving function is the concentration of carbon dioxide in the inspired air Féoz (1) . We solve these
equations with respect to &,.(f) and 8,(f) for the case when FCIO (1) represents a jump with amplitude

cOz (1) )1. To solve these equations, we apply the classical method or the Laplace transform method.

The control system should be a "simple proportional regulator that does not contain dynamic
clements". We suppose now that the same relation can be written in such a way that the concentration &,

is included in it, and that it is valid for both transitional and steady-state conditions. We write down the
equation of the control system in the following form:

V,=kl6,-0,]+V,. (12)

In this equation &, - preset value, VA, - bias signal. The gain of the proportional regulator is &, .

Equations of motion (12) can be reduced to the following form, assuming y =6,

d’y o dy
M—+R=—+Ky=F, 13
dt* dt 4 (13)
where
BA.K BAMR
M:KA[.(T, R:&+#+&, K =1, F=BAI;, (+ +MR+AI,
or, V, V, Q v, 0



ISSN 2224-5278 Cepus ceonoeuu u mexnuueckux Hayk. Ne 2. 2017

KV
The angular frequency: @, = {MJ =

R _ R
2(]{]\/[)% 2\/]\7.

Attenuation factor: b =

Consequently, the equation (13) takes the form:

1 dy 2b dy 1
@, d’ @, di 4 { } | (1

or
d’y
dr’

+2b~wn%+wjy:zzer (15)

with boundary conditions
yO =y, ¥O=y. yI)=y, yI)=0.

Using the change of variables
X=Y=rr
we have that
d’x dx
— 2o, —+ox=a.(F-y,)=u,
dtz n dt n n( yT)

where
X =x, u=a,(F-y)
This differential equation in the Cauchy normal form takes the form:
X, =x

o (16)

X, =—@,x, -2b@ x, +u
with boundary conditions

x(0)=x,, =y, —Vr,

xz(o) =Xy =V a7
Xy (T) =0,
x,(T)=0.

In the vector-matrix form:
X = Ax+ Bu, x(0) = x,, x(T)=0,

0 1 0 X
A= _, _ =l | x= ., u— scalar.
-0, —2bo, 1 X,

Fundamental system
O(t) = A0(1), O(0)=4

where

is represented as:

0, 0, (0 1 Y0, 00 ( O 0.,
021 Ozz _a): -2bo, 021 Ozz _a’ZOAu_Zba)nOAzl _ijAlz_wanOAzz-

Hence we have
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én =0,,
D, :_w.j@n _wan@zn (13)
D, =D,,,
@22 = —Wﬁ@lz -2b wn@ll@ZZ’
O0n@=1  0,0=0,  0,0=0, Oy(O)=1.
Next we get
O, +2b0,0,, + 00, =0, O, +2b0,0,, +0}0,, =0. (19)

We note that the disturbance Féoz (s) is the direct driving force for the controlled system, and the

control value V;(s) excites the system due to parametric influence. The latter is the source of the
nonlinearity of the system, as can be verified by substituting the equation (6) in (19).

We obtain the following equation of a closed system with respect to &,

ab, + BO, + 6,0, +6? +nb, = A, (20)
where
o= KAy >
k,Q
ﬂ5@+&mtm%+&mrﬁﬁg
k) 0 kO ©
%
n= Q_gn _BASFC{Oz _@_Ai’
k, 0
. BASMR+ V. -6, | BAFL, +@+A, .
k, |k, ©9

The equation (20) is a nonlinear differential equation, since it contains terms of the second degree
0,0, and 6, . Since V, is a linear algebraic function of &, concentration (equation 6), then the equation
of a closed system with respect to VA in the form would be identical to equation (20). Relatively to @, a

complex nonlinear equation can also be obtained [2].
Let us consider the stabilization of the motions of the quadratic system (20) on a finite interval of

time [ 4].
We denote # =J7, - as control

B =P +pByu,
n=mu-ns, =l A=K =Y
A=A+ Au,

where






