UDC 681.3

A. S. BORANBAYEV
OPTIMAL METHODS FOR JAVA WEB SERVICES

This article introduces the major components of the Web services architecture. It talks about how Web services
standards are used to solve problems in business situations, and gives a brief overview of the major Web services

concepts.

1. Overview.

This article is for I'T personnel involved with Web
Services as well as anyone interested in understand-
ing the web service environment used today. Web
Services as a software system are designed to sup-
port interoperable machine to machine interaction
over a network in real time [1].

Web Services allow applications at different lo-
cations to communicate with one another. Applica-
tions that use Web Services for interaction can run
on different platforms and be programmed using lan-
guages that are non-compatible to each other. An
example would be a Java application sharing infor-
mation with a .NET application via Web Service.
This makes Web Services extremely portable. Web
Services use XML (Extensible Markup Language)
to code and decode the data and SOAP (Simple
Object Access Protocol) to transport it using open
protocols.

Web services help solve the interoperability

problem by giving different applications a way to
share business logic in real time. A real world exam-
ple of the interoperability with Web Services would
be an accounting department that uses Win2000
Server billing system connecting with the IT Sup-
pliers that use UNIX Server.

Interoperability is not the only reason to use Web
Services. They also provide reusable application
components. Reusable methods that perform busi-
ness functionality, which are exposed to consumers,
are referred to as operations. A group of these oper-
ations is called a service. There are certain things
that different applications need very often. That is
why there is no reason to make pieces of an applica-
tion over and over again, when a service for that
functionality is available.

This document will talk about how Web servic-
¢s standards are used to solve problems in business
situations, and will give a brief overview of the ma-
jor Web services concepts and standards.

38

MATEMATHKA

2. How are Web Services Used?

Web Services are widely used in various compa-
nies to help solve real business problems, and provide
an array of services open to consuming applications.
A commonly used Web Service would be Lookup
Employee Information by RNN (Tax payee identifi-
cation number). This returns the Employee details
for a given Employee RNN. We can also lookup
Employee by Employee ID, in this case it returns
the Employee details for a given Employee ID.

Web Services are not limited to look up type
functionality. There are Web Services consumed by
Rate and Status that will create users in Authenticator
when a new employee is hired.

The principles behind web services are simple [2]:

1. The web service provider defines a format for
requests for its service and the response the service
will generate.

2. A computer makes a request for the web ser-
vices across the network.

3. The web service performs some action, and
sends the response back.

In a real world example this action might be
validating a credit card number, retrieving a stock
quote, finding the best price for a particular product
on the internet, or translating some text to another
language. Regardless of the service all communi-
cation between are done through SOAP.

3. What is SOAP?

The Simple Object Access Protocol (SOAP) isa
protocol for exchanging XML-based messages over
computer networks, normally using HTTP/HTTPS
[3]. This is the common language of Web Services.
It is used as an extensible message envelope format,
with «bindings» to underlying protocols.

SOAP messages are sent back and forth between
the service provider and service user in SOAP enve-
lopes, containing a request for some action and the
result of that action. SOAP envelopes are XML
formatted, and are easy enough to decode.

The following examples show a SOAP request
and response generated when invoking a web service
operation that calculates the cost to mail a package based
on the specified zip code, and the weight of a package.

SOAP request:

The SOAP envelope body (soap:Body) includes
the operation name (calculate), and the operation
parameters (zipcode and weight).

<?xml version=»1.0" encoding=»utf-8" 7>
<soap:Envelope>

<soap:Body>
<calculate>
<zipcode xsi:type=»xsd:int»>53187</zipcode>
<weight xsi:type=»xsd:float»>0.75</weight>
</calculate>
</soap:Body>
</soap:Envelope>

SOAP response:
In the SOAP envelope body, the SOAP response
includes the result value.
<?xml version=»1.0" encoding=»utf-8" 7>
<SOAP-ENV:Envelope
<l— namespace declarations —> >
<SOAP-ENV:Body>
<calculateResponse>
<calculateResult xsi:type=»xsd:float»>1.08</
calculateResult>
</calculateResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
Thus, through the help of SOAP we can construct
a request to get some work done, and have a
consistently formatted XML response returned
across the network.

4. What is a WSDL?

WSDL (Web Services Description Language) is
a specification defining how to describe web services
in a common XML grammar [4]. It is an XML based
service description binding that describes how the
service is bound to a messaging protocol. It uses the
SOAP messaging protocol. The WSDL defines ser-
vices as collections of network endpoints, or ports.

WSDL describes four critical pieces of data:

— Interface information describing all publicly
available functions

— Data type information for all message requests
and message responses

— Binding information about the transport pro-
tocol to be used

— Address information for locating the specified
service

WSDL represents a contract between the service
requestor and the service provider, in much the same
way that a Java interface represents a contract between
client code and the actual Java object. The crucial

39

Hsgecmua HAH PK. Cepus gpusuxo-mamemamuyeckas

2007. Ne 5

difference is that WSDL is platform (and language)
independent and is used to describe SOAP services.

Using WSDL, a client can locate a web service
and invoke any of its publicly available functions.
With the help of WSDL tools, we can also automate
this process, enabling applications to easily integrate
new services with no manual code. WSDL therefore
represents a cornerstone of the web service architec-
ture, because it provides a common language for
describing services and a platform for automatically
integrating those services.

4.1 Style and Use.

A WSDL SOAP binding can be either a Remote
Procedure Call (RPC) style binding or a Document
Style binding. A SOAP binding can have an encoded
use or a literal use. This gives us four style/use models:

1. RPC/encoded

2. RPC/literal

3. Document/encoded

4. Document/literal

The terms used to name the style/use does not
imply that the RPC style should be used for RPC
programming models and that the Document Style
should be used for document or messaging prog-
ramming models. The style has nothing to do with a
programming model. It merely states how to translate
a WSDL binding to a SOAP message. We can use
cither style with any programming model. The style
and use that we focus on in this document - are
document/literal.

5. What is JAX-RPC (JSR-101)?

JAX-RPC stands for “Java API for XML-based
Remote Procedure Calls”. JAX-RPC allows invoking
from a Java application a Java based Web Service
with a known description while still being consistent
with its WSDL description.

JAX-RPC uses SOAP and HTTP to do RPCs
over the network. RPC stands for remote procedure
calls, and is used for making procedure or function
calls and receiving the responses. The SOAP specifi-
cation defines the necessary structure, a convention
for doing RPCs, and its corresponding responses.
The RPCs and responses are transmitted over the
network using HTTP as the primary transport
mechanism.

From an application developer’s point of view,
an RPC-based system has two aspects: the server
side (the Web service) and the client side. The Web
service exposes the procedures that can be executed,
and the client does the actual RPC over the network.

As discussed above, a Web service environment
is based on open standards such as SOAP, HTTP,
and WSDL. It is therefore possible that a Web service
or a client wasn’t developed using the Java platform.
However, JAXR-RPC provides the mechanism that
enables a non-Java client to connect to a Web service
developed using Java platform, and vice versa [9].

The runtime protocol works as follows:

1. A Java program invokes a method on a stub.

2. The stub invokes routines in the JAX-RPC
runtime system.

3. The runtime system converts the remote
method invocation into a SOAP message.

4. The runtime system transmits the message as
an HTTP request.

The consumer becomes aware of the provider
services through the machine readable WSDL file.
Construction of the consumer relies on the WSDL
from the provider.

JAX-RPC is WS-I compliant and is widely
accepted among the industry. WS-I stands for “The
Web Services Interoperability Organization”. WS-I
is an industry consortium created to promote inte-
roperability among the stack of web services speci-
fications [13].

6. JSR-109 (Web Services in the J2EE
Environment).

There are many standards in the areas of Web
Services” lifecycles, security measures, and transac-
tions. JSRs have been created to begin the process
of defining the different aspects of how Web services
might be supported in a J2EE-compliant application
server [10].

JSR-109 specifies the web services programming
model and architecture for J2EE (Java 2 Enterprise
Edition). JSR-109 builds on SOAP 1.1 and WSDL
1.1 to cover the use of JAX-RPC in a J2EE environ-
ment. It also defines a deployment model to J2EE
application servers. JSR 109 specifically discusses
local client access to Web services, server lifecycle,
and deployment of Web services [10].

40

MATEMATHKA

JSR 109 and JAX-RPC:

JSR 109 (J2EE)

API

JAX-RPC (J2SE)

XML €4—» Java

J2EE descriptors

JAX-RPC 1.1 and JSR 109 are part of J2EE 1.4,

7. A Deeper Look at How JAX-RPC Works.

Application Model: ﬁ

JAX-RPC
Runtime

— Stubs are local objects that represent the remote
procedures.

— Ties are classes that reside on the provider and
enable communication with the consumer.

It is assumed that the consumer is aware of the
web service and the remote procedure that it can
execute on the web service [9].

1. The consumer calls the method on the stub
that represents the remote procedure.

2. The stub executes the necessary routines on
the JAX-RPC runtime system.

3. The runtime system converts this method call
into a SOAP message and transmits the message to
the provider as an HTTP request.

Service Client

1

Provider

SOAP
Message

JAX-RPC
Runtime

4. The provider, upon receipt of the SOAP message,
invokes the methods on the JAX-RPC runtime.

5. The JAX-RPC runtime converts the SOAP
request into a method call.

6. The JAX-RPC runtime calls the method on
the tie object.

7. The tie object calls the method on the
implementation of the web service.

8. The response to the RPC call is sent in a SOAP
response message as an HT TP response.

The mode used for a JAX-RPC service is
synchronous. Synchronous Request-Response: The
client invokes a remote procedure and blocks until
it receives a return or an exception.

Service Endpoint

Invoke method (params)

Synchronous
Request-response Mode

Return method (params)
or Exception

41

Hsgecmua HAH PK. Cepus gpusuxo-mamemamuyeckas

2007. Ne 5

8. Security.

Security restricts the consumers allowed to
access the service through authentication. Consumers
connect to a service but are restricted from executing
specific services. Security needs to be implemented
on the Provider and Consumer.

Web Services should incorporate a framework
that handles security. The purpose of web services
security framework is to provide a means to secure
web services. The framework provides authentica-
tion and authorization capabilities. When the security
framework is used authentication is always perfor-
med. All consumers accessing web services must
provide valid ID and password. Authorization is op-
tional - meaning an operation can be setup so that it
is accessible by all consumers and other operations can
be setup so that only few consumers can access it [12].

The framework uses Username Token Profile 1.0
standards from OASIS [11]. This standard specifies
the format in which user credentials are communi-
cated between the consumer and the provider.

The security framework is based on JAX-RPC
handler architecture. The server/provider can be
configured via a configuration file to control access
to services that it provides. The Web Services Secu-
rity Framework utilizes a “keystore.xml” file. The
“keystore.xml” has the password and login for the
particular service. Consult Web Services Security
Framework Guide for Provider (Server) using Web-
Sphere 6.1 if the data transferred service needs to be
secured as well.

9. Monitoring.

Web Services are complex and can be difficult
to manage and monitor. Web service integration
involves multiple systems and people; it introduces
some complexities of managing and monitoring.
Service Consumers need to know how their systems
would behave when using web services, and to be
able to design and provide their business
performance efficiently. Service Providers need to
know the usage patterns and usage load of their
services so that they can predict the loads, allocate
appropriate resources, and plan for expansion if and
when needed. To enable the above mentioned fea-
tures, there are various monitoring tools used for
service management and reporting, which provide
more visibility into Web Services.

We always want to be alerted and informed about
the abnormal usage or response times so that we can

take appropriate action in time. We want to be able
to compile historical data to measure how well Web
Services are performing over time. This information
is important for designing network, designing
applications, capacity planning, adhering to Service
Level Agreements (SLA), estimating future loads and
trends of usage, and presenting insight to the business
users on how the business services are being used
so that they can make their business more effective
and available.

10. Approach for Web Service Design.

Many companies use a bottom up approach for
the provider. Bottom up is a strategy for building the
service from a Java bean in the project. We usually
start by developing the class that will be exposed as
a Web Service. Once the class is written, we use the
wizard found in the IDE (Integrated Development
Environment) to automate the transition from class
to service [8]. This will take the written code and
generate a WSDL file from it.

When designing the classes that will be exposed
as a service or use a service we usually keep in mind
a few rules:

— The service name should match the business
functionality, with a clear and concise method name.

— We should make our Web Service reusable
across all applications. Web Service should not cater
to a specific application.

— A consumer calling a service should be auto-
nomous, no other functionality should be executed
then forced to wait for the service to return.

— Consumers should always implement a timeout
mechanism when calling a service.

What not to do with Web Services:

— Web Services are not a large data transport
technology. We should not use a Web Service like
an FTP server.

— Web Services hold no state. State should be
preserved on the client application side. Web Services
perform a specific operation and return a value. They
should not retain the information sent to them.

— Application functionality should not tie up
resources while waiting for a Web Service to return.
Applications should be safeguarded with “timeout”
ability in case the Web Service hangs.

11. Summary.
In this paper, we have discussed both the benefits

42

MATEMATHKA

of Web services for business applications and the
state of standards development for these services.

At different organizations the term Web Service
usually refers to consumers and providers that com-
municate using XML messages that follow the SOAP
standard. There is also a machine readable descrip-
tion of the operations supported by the server, a des-
cription in the Web Services Description Language
(WSDL). Many organizations prefer using the JAX-
RPC with a “document/literal style and use” to allow
more flexibility in the WSDL and overall service
itself.

Web Services are Web APIs that can be accessed
over a network in real time, such as the Intranet via
HTTP or HTTPS, and executed on a remote system
hosting the requested services. For the most part Web
Services are synchronous but by nature are not
limited to it.

It is always a good idea to test and monitor all
Web Services, even if they are used internally. There
are monitoring tools that will monitor services and help
the provider develop their informal and formal SLA.

REFERENCES

1. Web service, from Wikipedia, the free encyclopedia:
http://en.wikipedia.org/wiki/Web_service

2. Web Services Activity - http//www.w3.org/2002/ws/

3. Specification SOAP - http://www.w3.org/tr/soap

4. Specification WSDL - http:// www.w3.org/tr/wsdl

5. IBM Developers Work zone (articles/examples/ about
J2EE technologies, XML technologies, and web services) - http:/
/www.ibm.com/developerWorks

6. Various XML projects Apache Software Foundation -
http://xml.apache.org/

7. Website Sun Microsystems, about Java - http://java.
sun.com/

8. http://en.wikipedia.org/wiki/Integrated development
environment

9. Chapter 11: Working with JAX-RPC from the book «Java
APIs for XML Kick Start» by Aoyon Chowdhury and Parag
Choudhary, published by Sams Publishing.

10. JSR 109: Web Services Inside of J2EE Apps, written
by Al Saganich, 08/07/2002. Published on ONJava.com:
http://www.onjava.com/pub/a/onjava/2002/08/07/j2eewebsvs.
html

11. Web Services Security, UsernameToken Profile 1.0,
OASIS Standard 200401, March 2004: http://docs.oasis-
open.org/wss/2004/01/0asis-200401-wss-username-token-
profile-1.0.pdf

12. Systinet Server Web Services Security framework: http:/
/www.systinet.com/doc/ssj-60/ssj/secguide.html

13. Web Services Interoperability, from Wikipedia, the free
encyclopedia: http://en.wikipedia.org/wiki/WS-I

Pezrome

Maxkana BeO-cepBHCTEP/IiH apXuTEKTyPACKI HBIH HETi3Ti
KOMIIOHEHTTepiHe apHairaH. [[pakTHKAIBIK ecenTepi merny
YIIiH BeG-CepBUCTEPAIH CTAHIAPTTAPLIHBIH Kallail KOIJaHblia-
THIHJIBUTBIFBI KOPCETIITeH, BeO-cepBUCTEP/IiH HETI3Ti KOHIIEM-
[MSICHIHBIH CHMATTAMACKH! OEpIIreH.

Pezrome

Cratbs TMOCBsICHA TTIaBHBIM KOMIIOHCHTaM apXUTCKTYPhI
Be6-CepBI/ICOB. OHI/ICLIBaeTCSI, KakK MOJKHO HUCIIOJIB30BaTh CTaH-
JapThbl Be6-CepBI/ICOB JUI peHICHU S TIPAKTUYCCKUX 3aJad, JacT-
Cs OITMCaAaHHUEC OCHOBHBIX KOHICIIITUH Be6-CepBI/ICOB.

L.N. Gumilyov Eurasian

National University Hocmynuna 2.07.06e.

