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DETERMINATION OF CONSTITUENT MASS
OF QUARKS IN THE FIELD CORRELATOR METHOD

In the framework of the field correlator method, the mass spectrum of the mesons consisting of the light-heavy quarks with
orbital and radial excitations is determined. Dependence of the constituent mass of a free state is derived. When quarks are light,
then the difference of constituent and current masses of quarks is greater than current masses of quarks, and when quarks are heavy
than the difference of these masses is insignificant.

1. Introduction

The description of the mass spectrum of hadrons is one of the fundamental problems of strong interactions.
On the basis experimental data for the u- and d- quarks this is in the ranges 4-8.5 MeV, and for the s- quark
is 80-155 MeV and for the c- quark is 1-1.4 GeV (for details see Ref. [1]). At present, many-potential and
nonpotential models exist which investigate the property and dynamics of hadrons (for example see Ref.
[2]-]4]). Most of the models for the description of the property of hadrons consisting of light quarks use the
constituent mass of quarks as free parameters and for the u- and d- quarks this is in the range of 150-220.5 MeV.
Thus, the difference between constituent and current masses of light quarks is very large, but this difference
for the ¢- and b- quarks is not large. Then we face such problems as whether we can determine the dependence
of constituent masses on current masses and how to explain that the difference between constituent masses
and current masses for the light quarks is very large but for heavy quarks is small. The answers to these
questions give us a possibility to understand the formation mechanism of relativistic bound state and also to
explain the transition dynamics of confinment to deconfinment phase of hadrons.

In the framework of various approaches the constituent mass dependence of the current quark mass and
of the basic quantities of relativistic bound states is considered. At present, the dependence of constituent
mass on current mass of quarks is determined in the framework of the sum rule approach [5] using gauge-
invariant representation of condensate of quark field at high momentum transfer or at a short distance in
Euclidean space. However, to explain many phenomena which appear at large distances this method is not
sufficient [6].

The dependence of the constituent quark mass on the current quark mass and quark condensate is also
considered [8] in the framework of the QCD instant on vacuum model [7]. However, the confinement is
absent in an instant on vacuum model.

In [9], using the Fock - Feynman - Schwinger representation one of the unique methods of consideration
of nonferturbative characteristics of interaction was suggested for description of properties of relativistic
bound states (detailed see Ref. [10]). This method is based on using a gauge — invariant Green function for
white objects and the transformation matrix can be represented in the form of a functional integral [11].
Father, this method was improved and successfully applied for description of hadrons and glueball mass
spectrum [12]. The main moment of this method is the calculation of the functional integral. Certainly, this
integral is not evaluated in a general way, but one can calculate it only using some physical suggestions. One
of the alternative methods for calculation of the functional integral is suggested in Ref. [13] and the glueball
mass are determined. In this work, were calculated the mass spectrum of mesons consisting of light-heavy
quarks with orbital and radial excited states and determined the dependence of the constituent mass on the
current mass of quarks.

2. The mass spectrum of the bound state

In this section, we will present one of the alternative methods of the bound-state mass determination in
the framework of the Field Correlator Method (FCM) [9, 10] with nonperturbative and relativistic character
of the interaction taken into account. Let us consider an interaction between two charged scalar particles in
the external gauge field. We assume that these particles constitute a bound state. Let us determine the mass
of a bound state by investigating the asymptotic behavior of the polarization loop function for a charged
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scalar particle in the external gauge field. The polarization loop function for a scalar loop particle can be
written as

)>A. Q2.1
4)

M(x - y)=(G,, (x.»}4)G,, (.4

Here the averaging over the external gauge field A, (x) is performed. The green function G, (y, X

for the scalar particle in the external gauge field is determined from the equation

2 2
[iaJrgA (x)j +5&m? G(x,y

Aa):5(x—y), (2.2)
hZ

where m is the mass of the scalar particle, and g is the coupling constant. In averaging over the external

gauge field A4, (x), let us consider only the lowest order or only or only the two-point Gauss correlator

: 1
(expifeiva,, (e, (¥))) , = exp{—zﬂ dvdyJ o Doy (x=) g (y)} . (23)
Where J, (x) is the real current. The propagator of the gauge field has the following from:

Dy (x=y)=(4,(x)4,(») . (2.4)
From (2.1) one can see that for determination of the loop function one needs to determine the Green

function. The solution of (2.2) can be represented us a functional integral in the following way (for details
see Ref. [14]).

G(x,y A) :?7

exps —sm’ () Jdo exp{igof dfazo‘(g)/la (f)}, (2.5)
(4rs)’ 4s

o

0

where the following notation is used:

Z,&)=(x=y),E+y, —2VsB,(&);

do,=NG5B exp{—% j ngZ(g)}, 2.6)

with the normalization
B,(0)=B,(1) 0 fdo, 1.
where N is the normalization constant. Substituting (2.5) into (2.1) and averaging over the external gauge

field A, (x), one can obtain for the loop function
00(8x772)2 2 L 27 H, v .
Here

J () = NINZ.”571572 exp{—%j‘dr(ulﬁz (T)+ W7 (r))} exp{—WL1 +2W,, - Wz,z} (2.8)

0

and the following notation is used:
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p

We have the loop-function for the scalar particles with masses m, and m,, and the interaction can be
performed with exchange of gauge field. This interaction of constituent particles has two parts: first, the
exchange interactions of constituent particles and the contributions of these interactions determined by W, ,
and second, the interactions of constituent particles by themselves such as the self-energy diagram
contributions and represented by W, | and W, , (for details see Ref.[15]). In particular, W, | and W, , define
nonpotential interactions, and W, , defines potential interactions with nonlocal nature. On the other hand,
the functional integral introduced in (2.8) is analogous to the Feynman trajectory integral for the motion of
two particles with masses p, and p, in the nonrelativistic quantum mechanics [16]. The interaction between
these particles is described by expression (2.9) which contains both the potential and nonpotential parts.
The mass of the bound state is usually defined through the loop function in the following way:

M=— lim M

x=yleo ‘x — y‘

. . 2 X N . . . .
W, =(-1)'"/ % (j) jdrldrzzg)(rl)Daﬁ (Z(l)(rl)—Z(])(rz))Z(])(rz). 2.9)

(2.10)

From (2.10) is follows that knowing the loop function one can determine the mass of the bound state as
well. However, the functional integrals in (2.7) and in (2.8) cannot be evaluated in a general way. According
to (2.10), one needs to derive the loop function in asymptotics. Let the functional integral in (2.8) be defined
in the |x— y| — oo limit in the following way:

‘ch‘i_r)rlJ(ul,uz)zexp{—xE(,ul,,uz)}. (2.11)

where E(p) is a value depending only on p, and p, and on the coupling constant g. In this approximation the
integral in (2.10) is evaluated by the saddle-point technique and, hence, for the bound state mass we obtain

. 2 2 2 21 '
M—\/m1 -2u E(,u)+\/m2—2,u E(,u)+uE(,u)+E(,u). (2.12)
The parameter p can be determined from the equation

1 1 1 1 1

S I + , (2.13)
Mo \/mf—Z,qu'(,u) \/m§—2,u2E'(,u)

where the following designation is used:

E () = ok(u)/op.

From (2.12) and (2.13) we see that if we determine £(u), then we can define the mass and constituent
mass bound state. We will consider the parameters p, and p, as masses of the constituent particles in the
bound state. These masses differ from m; and m, which represent the masses of a free state. In the description
on the mass spectrum of the relativistic bound state the constituent mass, which differs from the mass of
initially free particle, is usually introduced. Particularly, when describing the hadron mass spectrum, the
masses of the constituent and current quark are introduced. The quantity £(u) is defined as an eigenvalues
of the interaction Hamiltonian with the potentials in (2.9).

3. Determination of the mass spectrum of mesons consisting of light-heavy quarks
3.1. The energy spectrum of linear potential

In the FCM assume that the confinement of color objects can be explained only within the framework of
nonpertubation theory, and it is connected with the initiation linear potential or qark-antiquark string as a
result of nonperturbative interaction gluons. Let us determine E(x) the energy spectrum of linear potential
with orbital and radial excitations. The Schrodinger equation (SE) can be rewritten in the form:
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{Lﬁz +0o r}‘P:E(,u)‘P, (3.1
2u

where o is string tension. The energy spectrum and wave function are determined from SE in the framework
of the oscillator representation (OR) method [13, 17]. First of all, make the transformation of canonical
variables leading to the Gaussian asymptotics in the d- dimensional auxiliary space R4, and the interaction
Hamiltonian is represented in the normal form creation ™ and annihilation a operators (for details see
Ref [17]). We can rewrite the Hamiltonian (3.1) in the form

H=H,+¢e,(E)+H, . (3.2)
where H,, is the Hamiltonian of the free oscillator
H,=w(a, a,), (3.3)

and g, (E) is the ground-state energy in R

4p2uEF[Z,+2p - 1} 4p2,u61“[i +3p —l}
SO(E) = Za) + - ; (34)

o 'T d a)3pll"[dJ ’
2 2

here H; is the interaction Hamiltonian represented in the normal form

d
“ d ey idEe 4p° Ex° 4p° ox°
H] — J‘de‘(Tnj .e 7 (1+x) ez \/7(477) {_ pzpil . + 3£1 .Ll , (35)
. T 0! T1-2p) o’ 'T(1-3p)

2
. —x —x D . .
and the notation: e¢,” =e¢ = —1+x— 7 is used, :*: is the symbol of the normal ordering, and 77,, ¢, are

vectors in the d-dimensional auxiliary space R, the d-dimension of auxiliary space defined as
d=2+2p+4pl, (3.6)
here p is the variational parameter connected with asymptotic behavior of the wave function (for details see

Ref [17]). Let us determine the energy spectrum with orbital and radial excitations. In the OR the wave
functions with radial excitation are defined as

n)=C, (cfa+ )n'
where C, is the normalization constant determined as

%
c { I(d/2) } | 58
" 4" T(d/2+n,)

0), (3.7)

and the energy spectrum in R’ determined in the following way:

g, (E) = <nr H nr> =g, (E)+ 2n,0 + <nr ‘H]
HI

n). (3.9)

nr> is represented in the form

40 F(Z’+2p—lj 40 F(Z’+3p—lj
n)=-22 HE B IP MO C. (3.10)

2p-1 3p-1
® r d ® r d
2 2
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The calculational details of the matrix element (3.10) are given in Appendices A, and the parameters B

and C are represented in (A.7) and (A.8), respectively. In the OR the energy spectrum of the initial systems
and oscillator frequency are determined from the system of two equations [17]:

e(F)=0

og,(E) o (3.11)
oo

Taking into account (3.4) and (3.9), from (3.11) we determine the energy spectrum with orbital and
radial excitations, and then the mass and constituent mass defined from (2.12) and (2.13), respectively.
After some simple calculations for the bound state mass we obtain

M(K,nr)zx/g(\/uosz +\/§2+/J0S2 +ij (3.12)

v Ho
and for the constituent mass of quarks we have

,uz(ﬁ,nr): oLy’ ,uz(ﬁ,nr) = 1lcifz TS i, (3.13)

also, the energy spectrum can be written as follows:

E(K n )z%m}n(ﬁ} (3.14)

2"y \/E

where the following notation is used:

m

g : _ls4—2§2s+ (s4—2§2s)2 N s*E?
o > u0—223_ 2 3 22 263 2
o $° =& Valost —222) 257 ¢

1

o 2 I (4p+2p0)0(2+ p+2p0) 3[D2D1 +2D3j (.15)
3 4p°1°D,-T(3p +2p0) 2 | |
Here
D - p+(3p—1)§—(2p—ll)§j D, S L — (3.16)
p+2(2p—1)'Dn+5B l+p+2pl
D,=(1+4-D,)- L p-1C

1+8° 7 1+B

Thus, the mass spectrum of mesons consisting of light-heavy quarks with orbital and radial excitations
is analytically determined for the linear potential. In this case, we assume that

m, :ﬂ<<]’ &= y =0, (3.17)

Vo o Jo

where m and m, is the current mass light quarks, and m, is the current mass s quark.
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3.2. The energy spectrum Cornell potential
Let us determine the energy spectrum for the Cornell potential with orbital and radial excitations. The

SE can be rewritten in the form
1 4
— P +or——=
21 3 r

}P = E(u)¥ . (3.18)

According to the OR, the interaction Hamiltonian is represented in the correct form in d dimensional

o d . . ood.
auxiliary space R . In this case, the &, (E)-energy spectrum ground state in R is represented as

_do  4p’uoc F(%”p_l) _4p’uk F(%”p_l) L6, p*u F(%*’)_l)
= 4 a)Spfl F(%) a)Zp—l F(%) 3(0'071 F(%)
and the interaction Hamiltonian equals

o d
H, = .!dxj[d—\/%j exp{—n2(1+x)}: e{zz‘m I

2 -3p 2 -2p 2 -p
><{_4,{) uoc x 4p° Uk x oo p"u  x } (3.20)

& (E) (3.19)

0 I'(1-3p) o' I'l-2p) 307" I'(l-p)|

After some calculations for the energy spectrum of the initial systems with orbital and radial excitations
we obtain

E(l,n, 72 I'(2+p+2pf) 1+4-D, 1
%:mpln&xpz F((3p+2p€))' 1+ B +Z'F(4p+2p£)r(3p+2p£)x

1+C 4a Z 1+D
———— ' (2p+2pf)-I'(3p+2pl)- = | 3.21
45 3 (p+p)(p+p)1+3}’ G20
the parameter z is determined by the equations
7 o100’ T2p+200) [o+(p-1D-(p-1E]
3 I'2+p+2pf) {p+(2p—l)Dn+;§}
—4xp2xF];2(4p+2§£2) [p+(3p—1)B—(2le)CLO. (3.22)
tptep {p+(2p—l)-Dn+2§}
Taking into account (3.21) and (3.22) from (2.13) we obtain for the constituent mass of quarks:
d{ E
£ = x| =,
.ul( Jnr) \/g\/ X d)C[\/gj
d{ E
n )= oot —| =, 3.23
w(t,n,) */g\/g x dx(\/gj (3.23)
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Then the parameter x is defined from the equation

B 1 B ¥
el e

For lincar and Cornell potentials the dependence of spin-averaged masses M (nr,ﬁ) (for details see

=0. (3.24)

Ref.[18]) of ¢ and n, is given in Fig. 1. The Regge slope o, (O) and the intercept o, (O) of the Regge

L-trajectory for M (nr A ) are calculated with the value of the parameters: &g = 0.39 is the coupling constant,

Fig. 1. The dependence of square spin-averaged masses

of mesons consisting of light-heavy quarks from £

at the values n, = 0,---4 and

m, =0.155GeV ,a; =0.39 .06 =0.19GeV .

The solid line for the linear potential, and dashed
for the Cornell potential, respectively

o =0.19Gel? is the string tension and m, = 0.155GeV is the s - quark current mass. The Regge L-
trajectory for the linear potential is lincar. However, for the Cornell potential the Regge slope with growth

of ( increases, in particular at £ =1a, =0.629Ge} *, and at /=5, =0.656Gel *, so the

trajectory is not linear. This behaviors of the Regge L-trajectory quality is in agreement with the experimental
results [19] for the K- meson Regge trajectory.

3.3. Determine the dependence of constituent masses on current mass
From (3.23) we see that the mass of constituent particles depends on m and E, so in our approach the

dependence of the constituent mass on the current mass m and the quantum numbers ¢ and #, determined.
At the values of the parameters o, = 0.39, ¢ =0. 19Gel* from (3.23) we determine the dependence of

U, = L, on m for the case of Cornell potential. The numerical results are represented in Fig. 2. From Fig.2

we can see that when m is small, then the difference between constituent and current masses of quarks is
greater than the current mass, and with increasing m this difference of masses decreases. The relation

A= (,u — m)/ m is determined at any values of current m. OQur results: at m = 0.155Ge) the relations

equal A=1.942, so the difference is twice greater than the current mass, this is m=0.45GeV this is 0.44, and
in the case m=1.5GeV equals 0.095; so the difference between constituent and current masses is 10.5 smaller
than the current mass. Thus, our results show that if the value of m is in the range of mass of light quarks,
then is the difference between constituent and current masses very great, but m equals of heavy, then this
difference is very small.

Fig. 3 represents the dependence of constituent masses of light quarks on current masses of heavy
quarks for the ground state and first orbital excitations. With increasing current masses of heavy quarks the
constituent masses of light quarks also increase, but after m > 3GeV go to saturation. However, constituent
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0,75
K, [Gev]

o,suﬂ

4 4 - m_[Gev]
m_ [Gev]
Fig. 2. The dependence of constituent masses of quarks Fig. 3. The dependence of constituent mass of light quarks
and mass of meson on the current mass of quarks for the on the current mass heavy quark with £/ =0, £ =1
ground state at the value o, = 0.39 and & = 0.19GeV* and at the value &, =0.39 and ¢ = 0.19GeV?

masses of heavy quarks and the masses of bound states with increase in current masses of heavy quark
increase.

On the basis of the received results it is possible to conclude:

— Within the framework of FCM, the mass spectrum mesons consisting of light-heavy quarks with
orbital and radial excitations are determined. The Regge slope and the intercept of the Regge L-trajectory

for the spin-averaged masses are determined. At small ¢ <5 the Regge trajectory for mesons consisting of
light and heavy quarks is nonlinear.

— Dependence of the constituent mass of quarks on the current mass of quarks is determined. Our results
show that when quarks are light, then the difference between the constituent and current masses of quarks is
greater than the current masses of quarks but if quarks are heavy as ¢ and b, then the difference of these
masses is insignificant.

Appendix A

Let us give some calculational details of the matrix element <nr‘ H,|n

° 4p*ul  x P 4p’uoc  x*
= dx .
! { 02! r(l—z,o)+ 0 T(-3p)]

d
x(n, -J(dnlj L) g 2ialan) gy (A1)

\/; v

For calculation of this matrix element, we very often treat the following term:

d
d - —2ivx®
T (x)= I[Tnj e "l e, Vaalan . |n). (A2)
T
Taking into account Eq.(3.7) and relations
+ +
n d" —ﬁ(a a )
—e

B=0 B=0
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and using the following representations:
e ~itkea) _ Pe D

2 v 2

where P, is the operator defined according to the following rules:

Pconst =0, Pv" =0, p<2: Pv"=1n>2;

after some manipulations from (A.2) we have:

d
d
T (x)=P C? dzn dn d‘fl d¢, ’ 2 Qex)-&l-5}
n X) == v—n J. 2 J.J. e
danﬁn N Jr N

% <O‘e—2ix/a(a§1) . e};iv@(a*n)erﬁvm(an)efZiﬁ(ale) O> . (A4)
Finally, we obtain
2n n k 28—k
k X T'(1+n 2 I'(k+n-S+d/2
=% % (-1) (1) ( ) (A3)

k=28=0 (x)ftd/2Tnt+d/2) T(1=S+1) 12 (k_§4)I(@2S—-k+1)

Taking into account (A.4) and (A.5), after integration over x and some simplification (A.1) we have:

40°EuT(d/2+2p-1)~ 4p’cuT(d/2+3p-1) ~
<nr HI nr> - _ p2p7F ( p ) pSp;f’l ( p )C’ (A6)
) I'(d/2) ) r'(d/2)
here
2n
- T(1+n /2 r T(1+k-2
B W) TI2) ey H0E20) (A7)
T(n.+d/2) T(1-2p) ;= . Tk+d 12)
and
2n
~ T'(+n T(d/2 r T'(+k-3
o= W) TW@I2) S ey g LARSP), (A8)
T(n.+d/2) T(1-3p) ;—5 . T(k+d [ 2)
here
fp o 228k T(k+n,-S+d/2)
An k)= Y - . (A.9)
- g (. —S+1) T(k—S+DI(2S—k+1)

Using these relations represented in (A.6)-(A.9), we arrive at expressions for the energy spectrum of the

linear potentials. Analogously, we can derive the matrix element <nr H, nr> for the Hamiltonian (3.20)

with the Cornell potential:
4p°EuT(d/2+2p-1) « 4pcu
<nr r>:_ pZ,D*I‘u ( ) + 3p-1 %
) I'(d/2) )
I'(d/2+p-1) ~ 16p°au I'(d/2+p-1)
r(d/2) 307 T(d/2)

H,|n

D, (A.10)

where

114




MATEMATHYECKAA ©OH3HKA

- T(+n,) T(d/2) 2 T (1+k-p)
_ r) . (_l)kA”r (k) P) (A.11)

D= .
L(n,.+d/2) T'(1-p) k§2 I'(k+d/2)
Using (A.10) we determine the energy spectrum for the Cornell potential with orbital and radial excitations.
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Pezrome

OpICTIK KOppeTATOp dfici MeHOepiHae opOu TATAbIK KoHE paHallIblK KO3FaH KYH Ke3IHJeT1 JKeHLT )KoHe ayblp KBapKTapaaH
TYpaThIH ME30HIapbIH MaCCAJIbIK CTICKTPI aHbIKTaFaH. KOHCTHTYSHTTIK MacCaHbIH epKiH KYH MaccachblHaH TOYEIIIi aHbIKTATFaH.
CoHbIMeH Oipre, erep KBapkTap keHia 0ojca, OHJa KBapKTap/blH 0acTalKbl KOHE KOHCTHTYIHTTIK MaccanapblHbIH aiiblpMallbi-
JILIFBI KBAPKTAP/IbIH OacTalkbl MaccachlHaH KOl ece apThIK 00ajibl, all KBapKTap ayblp Oosca, onjia 6y Maccanap/ibiH aifblpMaiiibl-
JIBIFBL a3 OONATBIHBI KOPCETIITCH.

Pestome

B paMKax METOAa MOJCBLIX KOPPEIIATOPOB OIIPEACIICH MAacCOBBIH CIICKTp Op6I/ITa.]'ILHLIX 1 pajuajibHbIX B036y)K,Z[eHHLIX COCTO-
AHUH MEC30HOB, COCTOSNX U3 JICTKO-TAKCIIBIX KBAPKOB. Onpe;:[eneHa 3aBUCUMOCTL KOHCTHTyBHTHOﬁ Macchl OT MacChl CBO6OZLHOFO
COCTOSHHA. HOKaSaHO, YTO KOrZla KBapKu ABJIIOTCA JICTKUMHU, PA3HOCTE KOHCTUTYSHTHBIX U UCXO/IHBIX MacC KBaAPKOB OKa3bIBaCTCA

B HCCKOJIBKO pas GOHLLHG, YCM UCXOHBIC MAaCChl KBApKOB, €CJIA KBAPKU SABJISKOTCA TSXKCIILIMHA , TO pa3HOCTL 5TUX MacC HC3HAYUTCIIb-
HO.

KazHY um. am-Dapabu,

2. Anmamut Hocmynuna 1.10.07e.

115




